Phenomenology of a Rydberg impurity in an ideal Bose Einstein condensate
- URL: http://arxiv.org/abs/2404.03980v1
- Date: Fri, 5 Apr 2024 09:22:17 GMT
- Title: Phenomenology of a Rydberg impurity in an ideal Bose Einstein condensate
- Authors: Aileen A. T. Durst, Matthew T. Eiles,
- Abstract summary: impurity-bath interaction can greatly exceed the mean interparticle distance.
Our analysis finds three distinct parameter regimes, each characterized by a unique spectral response.
Our exploration offers insights into the interplay between interaction range, density, and many-body behavior in impurity systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the absorption spectrum of a Rydberg impurity immersed in and interacting with an ideal Bose-Einstein condensate. Here, the impurity-bath interaction can greatly exceed the mean interparticle distance; this discrepancy in length scales challenges the assumptions underlying the universal aspects of impurity atoms in dilute bosonic environments. Our analysis finds three distinct parameter regimes, each characterized by a unique spectral response. In the low-density regime, we find that the Rydberg impurity is dressed by the surrounding bath similarly to the known Bose polaron. Transitioning to intermediate densities, the impurity response, given by sharp quasiparticle peaks, fragments into an intricate pattern bearing the hallmarks of a diverse molecular structure. Finally, at high density, a universal Gaussian response emerges as the statistical nature of the bath dominates its quantum dynamics. We complement this analysis with a study of an ionic impurity, which behaves equivalently. Our exploration offers insights into the interplay between interaction range, density, and many-body behavior in impurity systems.
Related papers
- Static impurity in a mesoscopic system of SU($N$) fermionic matter-waves [0.0]
We show that the impurity opens a gap in the energy spectrum selectively, constrained by the total effective spin and interaction.
Our findings hold significance for the fundamental understanding of the localized impurity problem and its potential applications for sensing and interferometry in quantum technology.
arXiv Detail & Related papers (2024-11-21T19:25:14Z) - Engineering impurity Bell states through coupling with a quantum bath [0.0]
We consider two distinguishable impurities immersed in an atomic background cloud of bosons, with the entire system being confined in a harmonic trap.
We show that the two impurities can form spatially entangled bipolaron states due to mediated interactions from the bosonic bath.
arXiv Detail & Related papers (2024-06-11T05:50:16Z) - Universal quantum dynamics of Bose polarons [0.0]
We measure the spectral properties and real-time dynamics of mobile impurities injected into a homogeneous Bose--Einstein condensate.
We map out both attractive and repulsive branches of polaron quasiparticles.
For near-resonant interactions the polarons are no longer well defined, but the universality still holds.
arXiv Detail & Related papers (2024-02-22T18:59:55Z) - Bound impurities in a one-dimensional Bose lattice gas: low-energy properties and quench-induced dynamics [0.0]
We study two mobile bosonic impurities immersed in a one-dimensional optical lattice and interacting with a bosonic bath.
We consider the branch of repulsive interactions that induce the formation of bound impurities, akin to the bipolaron problem.
arXiv Detail & Related papers (2024-02-05T15:01:14Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Regularized Zero-Range Hamiltonian for a Bose Gas with an Impurity [77.34726150561087]
We study the Hamiltonian for a system of N identical bosons interacting with an impurity.
We introduce a three-body force acting at short distances.
The effect of this force is to reduce to zero the strength of the zero-range interaction between two particles.
arXiv Detail & Related papers (2022-02-25T15:34:06Z) - Stability and breakdown of Fermi polarons in a strongly interacting
Fermi-Bose mixture [1.038987460834095]
We investigate an imbalanced mixture of bosonic $41$K impurities immersed in a Fermi sea of ultracold $6$Li atoms.
We find that the energy of the Fermi polarons formed in the thermal fraction of the impurity cloud remains rather insensitive to the impurity concentration.
A closer investigation of the behavior of the condensate by means of Rabi oscillation measurements support this observation.
arXiv Detail & Related papers (2021-03-05T12:08:42Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.