Investigating the Robustness of Modelling Decisions for Few-Shot Cross-Topic Stance Detection: A Preregistered Study
- URL: http://arxiv.org/abs/2404.03987v1
- Date: Fri, 5 Apr 2024 09:48:00 GMT
- Title: Investigating the Robustness of Modelling Decisions for Few-Shot Cross-Topic Stance Detection: A Preregistered Study
- Authors: Myrthe Reuver, Suzan Verberne, Antske Fokkens,
- Abstract summary: In this paper, we investigate the robustness of operationalization choices for few-shot stance detection.
We compare stance task definitions (Pro/Con versus Same Side Stance), two LLM architectures (bi-encoding versus cross-encoding), and adding Natural Language Inference knowledge.
Some of our hypotheses and claims from earlier work can be confirmed, while others give more inconsistent results.
- Score: 3.9394231697721023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For a viewpoint-diverse news recommender, identifying whether two news articles express the same viewpoint is essential. One way to determine "same or different" viewpoint is stance detection. In this paper, we investigate the robustness of operationalization choices for few-shot stance detection, with special attention to modelling stance across different topics. Our experiments test pre-registered hypotheses on stance detection. Specifically, we compare two stance task definitions (Pro/Con versus Same Side Stance), two LLM architectures (bi-encoding versus cross-encoding), and adding Natural Language Inference knowledge, with pre-trained RoBERTa models trained with shots of 100 examples from 7 different stance detection datasets. Some of our hypotheses and claims from earlier work can be confirmed, while others give more inconsistent results. The effect of the Same Side Stance definition on performance differs per dataset and is influenced by other modelling choices. We found no relationship between the number of training topics in the training shots and performance. In general, cross-encoding out-performs bi-encoding, and adding NLI training to our models gives considerable improvement, but these results are not consistent across all datasets. Our results indicate that it is essential to include multiple datasets and systematic modelling experiments when aiming to find robust modelling choices for the concept `stance'.
Related papers
- Adversarial Augmentation Training Makes Action Recognition Models More
Robust to Realistic Video Distribution Shifts [13.752169303624147]
Action recognition models often lack robustness when faced with natural distribution shifts between training and test data.
We propose two novel evaluation methods to assess model resilience to such distribution disparity.
We experimentally demonstrate the superior performance of the proposed adversarial augmentation approach over baselines across three state-of-the-art action recognition models.
arXiv Detail & Related papers (2024-01-21T05:50:39Z) - Joint Multiple Intent Detection and Slot Filling with Supervised
Contrastive Learning and Self-Distillation [4.123763595394021]
Multiple intent detection and slot filling are fundamental and crucial tasks in spoken language understanding.
Joint models that can detect intents and extract slots simultaneously are preferred.
We present a method for multiple intent detection and slot filling by addressing these challenges.
arXiv Detail & Related papers (2023-08-28T15:36:33Z) - Joint Salient Object Detection and Camouflaged Object Detection via
Uncertainty-aware Learning [47.253370009231645]
We introduce an uncertainty-aware learning pipeline to explore the contradictory information of salient object detection (SOD) and camouflaged object detection (COD)
Our solution leads to both state-of-the-art performance and informative uncertainty estimation.
arXiv Detail & Related papers (2023-07-10T15:49:37Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - Inter-model Interpretability: Self-supervised Models as a Case Study [0.2578242050187029]
We build on a recent interpretability technique called Dissect to introduce textitinter-model interpretability
We project 13 top-performing self-supervised models into a Learned Concepts Embedding space that reveals proximities among models from the perspective of learned concepts.
The experiment allowed us to categorize the models into three categories and revealed for the first time the type of visual concepts different tasks requires.
arXiv Detail & Related papers (2022-07-24T22:50:18Z) - Instance-Level Relative Saliency Ranking with Graph Reasoning [126.09138829920627]
We present a novel unified model to segment salient instances and infer relative saliency rank order.
A novel loss function is also proposed to effectively train the saliency ranking branch.
experimental results demonstrate that our proposed model is more effective than previous methods.
arXiv Detail & Related papers (2021-07-08T13:10:42Z) - Few-shot Visual Reasoning with Meta-analogical Contrastive Learning [141.2562447971]
We propose to solve a few-shot (or low-shot) visual reasoning problem, by resorting to analogical reasoning.
We extract structural relationships between elements in both domains, and enforce them to be as similar as possible with analogical learning.
We validate our method on RAVEN dataset, on which it outperforms state-of-the-art method, with larger gains when the training data is scarce.
arXiv Detail & Related papers (2020-07-23T14:00:34Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.