Large language models as oracles for instantiating ontologies with domain-specific knowledge
- URL: http://arxiv.org/abs/2404.04108v1
- Date: Fri, 5 Apr 2024 14:04:07 GMT
- Title: Large language models as oracles for instantiating ontologies with domain-specific knowledge
- Authors: Giovanni Ciatto, Andrea Agiollo, Matteo Magnini, Andrea Omicini,
- Abstract summary: Endowing intelligent systems with semantic data commonly requires designing and instantiating with domain-specific knowledge.
The resulting experience process is therefore time-consuming, error-prone, and often biased by the personal background of ontology designer.
We propose a novel domain-independent approach to automatically instantiate with domain-specific knowledge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background. Endowing intelligent systems with semantic data commonly requires designing and instantiating ontologies with domain-specific knowledge. Especially in the early phases, those activities are typically performed manually by human experts possibly leveraging on their own experience. The resulting process is therefore time-consuming, error-prone, and often biased by the personal background of the ontology designer. Objective. To mitigate that issue, we propose a novel domain-independent approach to automatically instantiate ontologies with domain-specific knowledge, by leveraging on large language models (LLMs) as oracles. Method. Starting from (i) an initial schema composed by inter-related classes andproperties and (ii) a set of query templates, our method queries the LLM multi- ple times, and generates instances for both classes and properties from its replies. Thus, the ontology is automatically filled with domain-specific knowledge, compliant to the initial schema. As a result, the ontology is quickly and automatically enriched with manifold instances, which experts may consider to keep, adjust, discard, or complement according to their own needs and expertise. Contribution. We formalise our method in general way and instantiate it over various LLMs, as well as on a concrete case study. We report experiments rooted in the nutritional domain where an ontology of food meals and their ingredients is semi-automatically instantiated from scratch, starting from a categorisation of meals and their relationships. There, we analyse the quality of the generated ontologies and compare ontologies attained by exploiting different LLMs. Finally, we provide a SWOT analysis of the proposed method.
Related papers
- End-to-End Ontology Learning with Large Language Models [11.755755139228219]
Large language models (LLMs) have been applied to solve various subtasks of ontology learning.
We address this gap by OLLM, a general and scalable method for building the taxonomic backbone of an ontology from scratch.
In contrast to standard metrics, our metrics use deep learning techniques to define more robust structural distance measures between graphs.
Our model can be effectively adapted to new domains, like arXiv, needing only a small number of training examples.
arXiv Detail & Related papers (2024-10-31T02:52:39Z) - Domain-Specific Retrieval-Augmented Generation Using Vector Stores, Knowledge Graphs, and Tensor Factorization [7.522493227357079]
Large Language Models (LLMs) are pre-trained on large-scale corpora.
LLMs suffer from hallucinations, knowledge cut-offs, and lack of knowledge attributions.
We introduce SMART-SLIC, a highly domain-specific LLM framework.
arXiv Detail & Related papers (2024-10-03T17:40:55Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
We present EdTM, as an approach for label name supervised topic modeling.
EdTM models topic modeling as an assignment problem while leveraging LM/LLM based document-topic affinities.
arXiv Detail & Related papers (2024-06-28T13:57:27Z) - Towards Complex Ontology Alignment using Large Language Models [1.3218260503808055]
Ontology alignment is a critical process in Web for detecting relationships between different labels and content.
Recent advancements in Large Language Models (LLMs) presents new opportunities for enhancing engineering practices.
This paper investigates the application of LLM technologies to tackle the complex alignment challenge.
arXiv Detail & Related papers (2024-04-16T07:13:22Z) - A Self-enhancement Approach for Domain-specific Chatbot Training via
Knowledge Mining and Digest [62.63606958140248]
Large Language Models (LLMs) often encounter challenges when dealing with intricate and knowledge-demanding queries in specific domains.
This paper introduces a novel approach to enhance LLMs by effectively extracting the relevant knowledge from domain-specific textual sources.
We train a knowledge miner, namely LLMiner, which autonomously extracts Question-Answer pairs from relevant documents.
arXiv Detail & Related papers (2023-11-17T16:09:10Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - OntoType: Ontology-Guided and Pre-Trained Language Model Assisted Fine-Grained Entity Typing [25.516304052884397]
Fine-grained entity typing (FET) assigns entities in text with context-sensitive, fine-grained semantic types.
OntoType follows a type ontological structure, from coarse to fine, ensembles multiple PLM prompting results to generate a set of type candidates.
Our experiments on the Ontonotes, FIGER, and NYT datasets demonstrate that our method outperforms the state-of-the-art zero-shot fine-grained entity typing methods.
arXiv Detail & Related papers (2023-05-21T00:32:37Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
Traditional domain adaptation methods presume that the classes in the source and target domains are identical.
Open-set domain adaptation (OSDA) addresses this limitation by allowing previously unseen classes in the target domain.
We propose a novel framework based on self-paced learning to distinguish common and unknown class samples.
arXiv Detail & Related papers (2023-03-10T14:11:09Z) - Knowledge Graph Anchored Information-Extraction for Domain-Specific
Insights [1.6308268213252761]
We use a task-based approach for fulfilling specific information needs within a new domain.
A pipeline constructed of state of the art NLP technologies is used to automatically extract an instance level semantic structure.
arXiv Detail & Related papers (2021-04-18T19:28:10Z) - Neural Entity Linking: A Survey of Models Based on Deep Learning [82.43751915717225]
This survey presents a comprehensive description of recent neural entity linking (EL) systems developed since 2015.
Its goal is to systemize design features of neural entity linking systems and compare their performance to the remarkable classic methods on common benchmarks.
The survey touches on applications of entity linking, focusing on the recently emerged use-case of enhancing deep pre-trained masked language models.
arXiv Detail & Related papers (2020-05-31T18:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.