The Use of Generative Search Engines for Knowledge Work and Complex Tasks
- URL: http://arxiv.org/abs/2404.04268v1
- Date: Tue, 19 Mar 2024 18:17:46 GMT
- Title: The Use of Generative Search Engines for Knowledge Work and Complex Tasks
- Authors: Siddharth Suri, Scott Counts, Leijie Wang, Chacha Chen, Mengting Wan, Tara Safavi, Jennifer Neville, Chirag Shah, Ryen W. White, Reid Andersen, Georg Buscher, Sathish Manivannan, Nagu Rangan, Longqi Yang,
- Abstract summary: We analyze the types and complexity of tasks that people use Bing Copilot for compared to Bing Search.
Findings indicate that people use the generative search engine for more knowledge work tasks that are higher in cognitive complexity than were commonly done with a traditional search engine.
- Score: 26.583783763090732
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Until recently, search engines were the predominant method for people to access online information. The recent emergence of large language models (LLMs) has given machines new capabilities such as the ability to generate new digital artifacts like text, images, code etc., resulting in a new tool, a generative search engine, which combines the capabilities of LLMs with a traditional search engine. Through the empirical analysis of Bing Copilot (Bing Chat), one of the first publicly available generative search engines, we analyze the types and complexity of tasks that people use Bing Copilot for compared to Bing Search. Findings indicate that people use the generative search engine for more knowledge work tasks that are higher in cognitive complexity than were commonly done with a traditional search engine.
Related papers
- The Essence of the Essence from the Web:The Metasearch Engine [0.0]
Metasearch Engine comes into play by reducing the user burden by dispatching queries to multiple search engines in parallel.
These engines do not own a database of Web pages rather they send search terms to the databases maintained by the search engine companies.
In this paper, we describe the working of a typical metasearch engine and then present a comparative study of traditional search engines and metasearch engines on the basis of different parameters.
arXiv Detail & Related papers (2024-11-06T06:56:22Z) - MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines [91.08394877954322]
Large Multimodal Models (LMMs) have made impressive strides in AI search engines.
But, whether they can function as AI search engines remains under-explored.
We first design a delicate pipeline, MMSearch-Engine, to empower any LMMs with multimodal search capabilities.
arXiv Detail & Related papers (2024-09-19T17:59:45Z) - When Search Engine Services meet Large Language Models: Visions and Challenges [53.32948540004658]
This paper conducts an in-depth examination of how integrating Large Language Models with search engines can mutually benefit both technologies.
We focus on two main areas: using search engines to improve LLMs (Search4LLM) and enhancing search engine functions using LLMs (LLM4Search)
arXiv Detail & Related papers (2024-06-28T03:52:13Z) - Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based
Search Engines [3.5845457075304368]
This research aims to dissect the mechanisms through which an LLM-powered search engine, specifically Bing Chat, selects information sources for its responses.
Bing Chat exhibits a preference for content that is not only readable and formally structured, but also demonstrates lower perplexity levels.
Our investigation documents a greater similarity among websites cited by RAG technologies compared to those ranked highest by conventional search engines.
arXiv Detail & Related papers (2024-02-29T18:20:37Z) - GEO: Generative Engine Optimization [50.45232692363787]
We formalize the unified framework of generative engines (GEs)
GEs use large language models (LLMs) to gather and summarize information to answer user queries.
Generative Engines typically satisfy queries by synthesizing information from multiple sources and summarizing them.
We introduce Generative Engine Optimization (GEO), the first novel paradigm to aid content creators in improving their content visibility in generative engine responses.
arXiv Detail & Related papers (2023-11-16T10:06:09Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z) - Search Engine and Recommendation System for the Music Industry built
with JinaAI [0.0]
Jina AI is an MLOps framework for building neural search engines.
Jina AI effectively helps to maintain and enhance the quality of performance for the search engine for the query given.
arXiv Detail & Related papers (2023-08-07T18:00:04Z) - Spacerini: Plug-and-play Search Engines with Pyserini and Hugging Face [104.2943594704532]
Spacerini is a tool that integrates the Pyserini toolkit for reproducible information retrieval research with Hugging Face.
Spacerini makes state-of-the-art sparse and dense retrieval models more accessible to non-IR practitioners.
arXiv Detail & Related papers (2023-02-28T12:44:10Z) - Boosting Search Engines with Interactive Agents [25.89284695491093]
This paper presents first steps in designing agents that learn meta-strategies for contextual query refinements.
Agents are empowered with simple but effective search operators to exert fine-grained and transparent control over queries and search results.
arXiv Detail & Related papers (2021-09-01T13:11:57Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.