Scope Ambiguities in Large Language Models
- URL: http://arxiv.org/abs/2404.04332v1
- Date: Fri, 5 Apr 2024 18:01:02 GMT
- Title: Scope Ambiguities in Large Language Models
- Authors: Gaurav Kamath, Sebastian Schuster, Sowmya Vajjala, Siva Reddy,
- Abstract summary: We investigate how different versions of certain autoregressive language models treat scope ambiguous sentences.
We introduce novel datasets that contain a joint total of almost 1,000 unique scope-ambiguous sentences.
Using these datasets, we find evidence that several models are sensitive to the meaning ambiguity in these sentences.
- Score: 29.427341094882966
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sentences containing multiple semantic operators with overlapping scope often create ambiguities in interpretation, known as scope ambiguities. These ambiguities offer rich insights into the interaction between semantic structure and world knowledge in language processing. Despite this, there has been little research into how modern large language models treat them. In this paper, we investigate how different versions of certain autoregressive language models -- GPT-2, GPT-3/3.5, Llama 2 and GPT-4 -- treat scope ambiguous sentences, and compare this with human judgments. We introduce novel datasets that contain a joint total of almost 1,000 unique scope-ambiguous sentences, containing interactions between a range of semantic operators, and annotated for human judgments. Using these datasets, we find evidence that several models (i) are sensitive to the meaning ambiguity in these sentences, in a way that patterns well with human judgments, and (ii) can successfully identify human-preferred readings at a high level of accuracy (over 90% in some cases).
Related papers
- Investigating Idiomaticity in Word Representations [9.208145117062339]
We focus on noun compounds of varying levels of idiomaticity in two languages (English and Portuguese)
We present a dataset of minimal pairs containing human idiomaticity judgments for each noun compound at both type and token levels.
We define a set of fine-grained metrics of Affinity and Scaled Similarity to determine how sensitive the models are to perturbations that may lead to changes in idiomaticity.
arXiv Detail & Related papers (2024-11-04T21:05:01Z) - Análise de ambiguidade linguĂstica em modelos de linguagem de grande escala (LLMs) [0.35069196259739965]
Linguistic ambiguity continues to represent a significant challenge for natural language processing (NLP) systems.
Inspired by the recent success of instructional models like ChatGPT and Gemini, this study aims to analyze and discuss linguistic ambiguity within these models.
arXiv Detail & Related papers (2024-04-25T14:45:07Z) - Exploring the Potential of Large Foundation Models for Open-Vocabulary HOI Detection [9.788417605537965]
We introduce a novel end-to-end open vocabulary HOI detection framework with conditional multi-level decoding and fine-grained semantic enhancement.
Our proposed method achieves state-of-the-art results in open vocabulary HOI detection.
arXiv Detail & Related papers (2024-04-09T10:27:22Z) - A Taxonomy of Ambiguity Types for NLP [53.10379645698917]
We propose a taxonomy of ambiguity types as seen in English to facilitate NLP analysis.
Our taxonomy can help make meaningful splits in language ambiguity data, allowing for more fine-grained assessments of both datasets and model performance.
arXiv Detail & Related papers (2024-03-21T01:47:22Z) - Agentivit\`a e telicit\`a in GilBERTo: implicazioni cognitive [77.71680953280436]
The goal of this study is to investigate whether a Transformer-based neural language model infers lexical semantics.
The semantic properties considered are telicity (also combined with definiteness) and agentivity.
arXiv Detail & Related papers (2023-07-06T10:52:22Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
We present the semantic notion of agentivity as a case study for probing such interactions.
This suggests LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery.
arXiv Detail & Related papers (2023-05-29T16:24:01Z) - We're Afraid Language Models Aren't Modeling Ambiguity [136.8068419824318]
Managing ambiguity is a key part of human language understanding.
We characterize ambiguity in a sentence by its effect on entailment relations with another sentence.
We show that a multilabel NLI model can flag political claims in the wild that are misleading due to ambiguity.
arXiv Detail & Related papers (2023-04-27T17:57:58Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.