Koala: Key frame-conditioned long video-LLM
- URL: http://arxiv.org/abs/2404.04346v3
- Date: Fri, 3 May 2024 19:43:55 GMT
- Title: Koala: Key frame-conditioned long video-LLM
- Authors: Reuben Tan, Ximeng Sun, Ping Hu, Jui-hsien Wang, Hanieh Deilamsalehy, Bryan A. Plummer, Bryan Russell, Kate Saenko,
- Abstract summary: We propose a lightweight and self-supervised long video-LLM (Koala) to adapt pretrained vLLMs for generalizing to longer videos.
Our approach outperforms state-of-the-art large models by 3 - 6% in absolute accuracy across all tasks.
Surprisingly, we also empirically show that our approach not only helps a pretrained vLLM to understand long videos but also improves its accuracy on short-term action recognition.
- Score: 70.52369588364992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long video question answering is a challenging task that involves recognizing short-term activities and reasoning about their fine-grained relationships. State-of-the-art video Large Language Models (vLLMs) hold promise as a viable solution due to their demonstrated emergent capabilities on new tasks. However, despite being trained on millions of short seconds-long videos, vLLMs are unable to understand minutes-long videos and accurately answer questions about them. To address this limitation, we propose a lightweight and self-supervised approach, Key frame-conditioned long video-LLM (Koala), that introduces learnable spatiotemporal queries to adapt pretrained vLLMs for generalizing to longer videos. Our approach introduces two new tokenizers that condition on visual tokens computed from sparse video key frames for understanding short and long video moments. We train our proposed approach on HowTo100M and demonstrate its effectiveness on zero-shot long video understanding benchmarks, where it outperforms state-of-the-art large models by 3 - 6% in absolute accuracy across all tasks. Surprisingly, we also empirically show that our approach not only helps a pretrained vLLM to understand long videos but also improves its accuracy on short-term action recognition.
Related papers
- HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding [52.696422425058245]
We build a large-scale hour-long long video benchmark, HLV-1K, designed to evaluate long video understanding models.
HLV-1K comprises 1009 hour-long videos with 14,847 high-quality question answering (QA) and multi-choice question asnwering (MCQA)
We evaluate our benchmark using existing state-of-the-art methods and demonstrate its value for testing deep long video understanding capabilities at different levels and for various tasks.
arXiv Detail & Related papers (2025-01-03T05:32:37Z) - ReTaKe: Reducing Temporal and Knowledge Redundancy for Long Video Understanding [55.320254859515714]
We introduce a training-free method, $bfReTaKe$, to reduce both temporal visual redundancy and knowledge redundancy for long video understanding.
DPSelect identifies Videos with local maximum peak distance based on their visual features, which are closely aligned with human video perception.
PivotKV employs VideoBenchs as pivots and conducts KV-Cache compression for the non-text tokens with low attention scores.
arXiv Detail & Related papers (2024-12-29T15:42:24Z) - Goldfish: Vision-Language Understanding of Arbitrarily Long Videos [51.547065479762715]
We present a methodology tailored for comprehending videos of arbitrary lengths.
We also introduce the TVQA-long benchmark, designed to evaluate models' capabilities in understanding long videos with questions in both vision and text content.
Our results indicate that our models have significant improvements in both long and short-video understanding.
arXiv Detail & Related papers (2024-07-17T15:59:32Z) - MovieChat+: Question-aware Sparse Memory for Long Video Question Answering [36.14140811797466]
We propose MovieChat to overcome the challenges of understanding long videos.
We use tokens in Transformers as the carriers of memory in combination with our specially designed memory mechanism.
MovieChat achieves state-of-the-art performance in long video understanding, along with the released MovieChat-1K benchmark with 1K long video, 2K temporal grounding labels, and 14K manual annotations for validation of the effectiveness of our method.
arXiv Detail & Related papers (2024-04-26T06:17:04Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - LVCHAT: Facilitating Long Video Comprehension [25.395689904747965]
We propose Long Video Chat (LVChat) to enable multimodal large language models (LLMs) to read videos.
LV significantly outperforms existing methods by up to 27% in accuracy on long-video QA datasets and long-video captioning benchmarks.
arXiv Detail & Related papers (2024-02-19T11:59:14Z) - A Simple LLM Framework for Long-Range Video Question-Answering [63.50439701867275]
We present LLoVi, a language-based framework for long-range video question-answering (LVQA)
Our approach uses a frame/clip-level visual captioner coupled with a Large Language Model (GPT-3.5, GPT-4)
Our method achieves 50.3% accuracy, outperforming the previous best-performing approach by 18.1% (absolute gain)
arXiv Detail & Related papers (2023-12-28T18:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.