DELTA: Decoupling Long-Tailed Online Continual Learning
- URL: http://arxiv.org/abs/2404.04476v1
- Date: Sat, 6 Apr 2024 02:33:04 GMT
- Title: DELTA: Decoupling Long-Tailed Online Continual Learning
- Authors: Siddeshwar Raghavan, Jiangpeng He, Fengqing Zhu,
- Abstract summary: Long-Tailed Online Continual Learning (LTOCL) aims to learn new tasks from sequentially arriving class-imbalanced data streams.
We present DELTA, a decoupled learning approach designed to enhance learning representations.
We demonstrate that DELTA improves the capacity for incremental learning, surpassing existing OCL methods.
- Score: 7.507868991415516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant challenge in achieving ubiquitous Artificial Intelligence is the limited ability of models to rapidly learn new information in real-world scenarios where data follows long-tailed distributions, all while avoiding forgetting previously acquired knowledge. In this work, we study the under-explored problem of Long-Tailed Online Continual Learning (LTOCL), which aims to learn new tasks from sequentially arriving class-imbalanced data streams. Each data is observed only once for training without knowing the task data distribution. We present DELTA, a decoupled learning approach designed to enhance learning representations and address the substantial imbalance in LTOCL. We enhance the learning process by adapting supervised contrastive learning to attract similar samples and repel dissimilar (out-of-class) samples. Further, by balancing gradients during training using an equalization loss, DELTA significantly enhances learning outcomes and successfully mitigates catastrophic forgetting. Through extensive evaluation, we demonstrate that DELTA improves the capacity for incremental learning, surpassing existing OCL methods. Our results suggest considerable promise for applying OCL in real-world applications.
Related papers
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
We propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods.
MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections.
Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks.
arXiv Detail & Related papers (2024-11-11T07:36:19Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Large Language Model Can Continue Evolving From Mistakes [36.14056870453356]
Continual Learning (CL) is crucial for keeping Large Language Models (LLMs) up-to-date and addressing their shortcomings.
We propose the Continue Evolving from Mistakes (CEM) method, a data-efficient approach aiming to collect CPT data.
Experiments demonstrate that CEM significantly enhances model performance and continual evolution.
arXiv Detail & Related papers (2024-04-11T17:44:56Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
We focus on semi-supervised continual learning (SSCL), where the model progressively learns from partially labeled data with unknown categories.
We propose a novel approach called Dynamic Sub-Graph Distillation (DSGD) for semi-supervised continual learning.
arXiv Detail & Related papers (2023-12-27T04:40:12Z) - Kaizen: Practical Self-supervised Continual Learning with Continual
Fine-tuning [21.36130180647864]
Retraining a model from scratch to adapt to newly generated data is time-consuming and inefficient.
We introduce a training architecture that is able to mitigate catastrophic forgetting.
Kaizen significantly outperforms previous SSL models in competitive vision benchmarks.
arXiv Detail & Related papers (2023-03-30T09:08:57Z) - Dissecting Continual Learning a Structural and Data Analysis [0.0]
Continual Learning is a field dedicated to devise algorithms able to achieve lifelong learning.
Deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions.
When we expose such systems to this incremental setting, performance drop very quickly.
arXiv Detail & Related papers (2023-01-03T10:37:11Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
"Online" continual learning enables evaluating both information retention and online learning efficacy.
In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online.
We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts.
arXiv Detail & Related papers (2021-08-20T06:17:20Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.