Joint Visual and Text Prompting for Improved Object-Centric Perception with Multimodal Large Language Models
- URL: http://arxiv.org/abs/2404.04514v1
- Date: Sat, 6 Apr 2024 05:59:02 GMT
- Title: Joint Visual and Text Prompting for Improved Object-Centric Perception with Multimodal Large Language Models
- Authors: Songtao Jiang, Yan Zhang, Chenyi Zhou, Yeying Jin, Yang Feng, Jian Wu, Zuozhu Liu,
- Abstract summary: Multimodal Large Language Models (MLLMs) such as GPT-4V and Gemini Pro face challenges in achieving human-level perception in Visual Question Answering (VQA)
This is mainly due to their limited capability to effectively integrate complex visual cues with textual information and potential object hallucinations.
We present a novel approach, Joint Visual and Text Prompting (VTPrompt), that employs fine-grained visual information to enhance the capability of MLLMs in VQA.
- Score: 22.545127591893028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) such as GPT-4V and Gemini Pro face challenges in achieving human-level perception in Visual Question Answering (VQA), particularly in object-oriented perception tasks which demand fine-grained understanding of object identities, locations or attributes, as indicated by empirical findings. This is mainly due to their limited capability to effectively integrate complex visual cues with textual information and potential object hallucinations. In this paper, we present a novel approach, Joint Visual and Text Prompting (VTPrompt), that employs fine-grained visual information to enhance the capability of MLLMs in VQA, especially for object-oriented perception. VTPrompt merges visual and text prompts to extract key concepts from textual questions and employs a detection model to highlight relevant objects as visual prompts in images. The processed images alongside text prompts are subsequently fed into MLLMs to produce more accurate answers. Our experiments with GPT-4V and Gemini Pro, on three benchmarks, i.e., MME , MMB and POPE, demonstrate significant improvements. Particularly, our method led to a score improvement of up to 183.5 for GPT-4V on MME and enhanced MMB performance by 8.17\% for GPT-4V and 15.69\% for Gemini Pro.
Related papers
- Attention Prompting on Image for Large Vision-Language Models [63.794304207664176]
We propose a new prompting technique named Attention Prompting on Image.
We generate an attention heatmap for the input image dependent on the text query with an auxiliary model like CLIP.
Experiments on various vison-language benchmarks verify the effectiveness of our technique.
arXiv Detail & Related papers (2024-09-25T17:59:13Z) - Instruction Tuning-free Visual Token Complement for Multimodal LLMs [51.138806401996696]
multimodal large language models (MLLMs) have promised an elegant bridge between vision and language.
We propose a Visual Token Complement framework (VTC) that helps MLLMs regain the missing visual features.
Our VTC integrates text-to-image generation as a guide to identifying the text-irrelevant features, and a visual selector is then developed to generate complementary visual tokens.
arXiv Detail & Related papers (2024-08-09T12:13:01Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models [92.60282074937305]
We introduce ConTextual, a novel dataset featuring human-crafted instructions that require context-sensitive reasoning for text-rich images.
We conduct experiments to assess the performance of 14 foundation models and establish a human performance baseline.
We observe a significant performance gap of 30.8% between GPT-4V and human performance.
arXiv Detail & Related papers (2024-01-24T09:07:11Z) - Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects [11.117055725415446]
Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios.
The absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors.
We propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration.
arXiv Detail & Related papers (2023-12-08T09:02:45Z) - A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering [53.70661720114377]
multimodal large models (MLMs) have significantly advanced the field of visual understanding, offering remarkable capabilities in realm of visual question answering (VQA)
Yet, the true challenge lies in the domain of knowledge-intensive VQA tasks, which necessitate deep comprehension of the visual information in conjunction with a vast repository of learned knowledge.
To uncover such capabilities, we provide an in-depth evaluation from three perspectives: 1) Commonsense Knowledge, which assesses how well models can understand visual cues and connect to general knowledge; 2) Fine-grained World Knowledge, which tests the model's skill in reasoning out specific knowledge from images, showcasing
arXiv Detail & Related papers (2023-11-13T18:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.