IITK at SemEval-2024 Task 10: Who is the speaker? Improving Emotion Recognition and Flip Reasoning in Conversations via Speaker Embeddings
- URL: http://arxiv.org/abs/2404.04525v1
- Date: Sat, 6 Apr 2024 06:47:44 GMT
- Title: IITK at SemEval-2024 Task 10: Who is the speaker? Improving Emotion Recognition and Flip Reasoning in Conversations via Speaker Embeddings
- Authors: Shubham Patel, Divyaksh Shukla, Ashutosh Modi,
- Abstract summary: We propose a transformer-based speaker-centric model for the Emotion Flip Reasoning task.
For sub-task 3, the proposed approach achieves a 5.9 (F1 score) improvement over the task baseline.
- Score: 4.679320772294786
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents our approach for the SemEval-2024 Task 10: Emotion Discovery and Reasoning its Flip in Conversations. For the Emotion Recognition in Conversations (ERC) task, we utilize a masked-memory network along with speaker participation. We propose a transformer-based speaker-centric model for the Emotion Flip Reasoning (EFR) task. We also introduce Probable Trigger Zone, a region of the conversation that is more likely to contain the utterances causing the emotion to flip. For sub-task 3, the proposed approach achieves a 5.9 (F1 score) improvement over the task baseline. The ablation study results highlight the significance of various design choices in the proposed method.
Related papers
- SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations [53.60993109543582]
SemEval-2024 Task 3, named Multimodal Emotion Cause Analysis in Conversations, aims at extracting all pairs of emotions and their corresponding causes from conversations.
Under different modality settings, it consists of two subtasks: Textual Emotion-Cause Pair Extraction in Conversations (TECPE) and Multimodal Emotion-Cause Pair Extraction in Conversations (MECPE)
In this paper, we introduce the task, dataset and evaluation settings, summarize the systems of the top teams, and discuss the findings of the participants.
arXiv Detail & Related papers (2024-05-19T09:59:00Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
Causal Emotion Entailment (CEE) aims to identify the causal utterances in a conversation that stimulate the emotions expressed in a target utterance.
Current works in CEE mainly focus on modeling semantic and emotional interactions in conversations.
We introduce a step-by-step reasoning method, Emotion-Cause Reasoning Chain (ECR-Chain), to infer the stimulus from the target emotional expressions in conversations.
arXiv Detail & Related papers (2024-05-17T15:45:08Z) - PetKaz at SemEval-2024 Task 3: Advancing Emotion Classification with an LLM for Emotion-Cause Pair Extraction in Conversations [4.463184061618504]
We present our submission to the SemEval-2023 Task3 "The Competition of Multimodal Emotion Cause Analysis in Conversations"
Our approach relies on combining fine-tuned GPT-3.5 for emotion classification and a BiLSTM-based neural network to detect causes.
arXiv Detail & Related papers (2024-04-08T13:25:03Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - LastResort at SemEval-2024 Task 3: Exploring Multimodal Emotion Cause Pair Extraction as Sequence Labelling Task [3.489826905722736]
SemEval 2024 introduces the task of Multimodal Emotion Cause Analysis in Conversations.
This paper proposes models that tackle this task as an utterance labeling and a sequence labeling problem.
In the official leaderboard for the task, our architecture was ranked 8th, achieving an F1-score of 0.1759 on the leaderboard.
arXiv Detail & Related papers (2024-04-02T16:32:49Z) - SemEval 2024 -- Task 10: Emotion Discovery and Reasoning its Flip in
Conversation (EDiReF) [61.49972925493912]
SemEval-2024 Task 10 is a shared task centred on identifying emotions in code-mixed dialogues.
This task comprises three distinct subtasks - emotion recognition in conversation for code-mixed dialogues, emotion flip reasoning for code-mixed dialogues, and emotion flip reasoning for English dialogues.
A total of 84 participants engaged in this task, with the most adept systems attaining F1-scores of 0.70, 0.79, and 0.76 for the respective subtasks.
arXiv Detail & Related papers (2024-02-29T08:20:06Z) - Attention-based Interactive Disentangling Network for Instance-level
Emotional Voice Conversion [81.1492897350032]
Emotional Voice Conversion aims to manipulate a speech according to a given emotion while preserving non-emotion components.
We propose an Attention-based Interactive diseNtangling Network (AINN) that leverages instance-wise emotional knowledge for voice conversion.
arXiv Detail & Related papers (2023-12-29T08:06:45Z) - Emotional Listener Portrait: Realistic Listener Motion Simulation in
Conversation [50.35367785674921]
Listener head generation centers on generating non-verbal behaviors of a listener in reference to the information delivered by a speaker.
A significant challenge when generating such responses is the non-deterministic nature of fine-grained facial expressions during a conversation.
We propose the Emotional Listener Portrait (ELP), which treats each fine-grained facial motion as a composition of several discrete motion-codewords.
Our ELP model can not only automatically generate natural and diverse responses toward a given speaker via sampling from the learned distribution but also generate controllable responses with a predetermined attitude.
arXiv Detail & Related papers (2023-09-29T18:18:32Z) - Emotion Flip Reasoning in Multiparty Conversations [27.884015521888458]
Instigator based Emotion Flip Reasoning (EFR) aims to identify the instigator behind a speaker's emotion flip within a conversation.
We present MELD-I, a dataset that includes ground-truth EFR instigator labels, which are in line with emotional psychology.
We propose a novel neural architecture called TGIF, which leverages Transformer encoders and stacked GRUs to capture the dialogue context.
arXiv Detail & Related papers (2023-06-24T13:22:02Z) - Beyond Isolated Utterances: Conversational Emotion Recognition [33.52961239281893]
Speech emotion recognition is the task of recognizing the speaker's emotional state given a recording of their utterance.
We propose several approaches for conversational emotion recognition (CER) by treating it as a sequence labeling task.
We investigated transformer architecture for CER and, compared it with ResNet-34 and BiLSTM architectures in both contextual and context-less scenarios.
arXiv Detail & Related papers (2021-09-13T16:40:35Z) - Discovering Emotion and Reasoning its Flip in Multi-Party Conversations
using Masked Memory Network and Transformer [16.224961520924115]
We introduce a novel task -- Emotion Flip Reasoning (EFR)
EFR aims to identify past utterances which have triggered one's emotion state to flip at a certain time.
We propose a masked memory network to address the former and a Transformer-based network for the latter task.
arXiv Detail & Related papers (2021-03-23T07:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.