Learning Instance-Aware Correspondences for Robust Multi-Instance Point Cloud Registration in Cluttered Scenes
- URL: http://arxiv.org/abs/2404.04557v1
- Date: Sat, 6 Apr 2024 08:51:07 GMT
- Title: Learning Instance-Aware Correspondences for Robust Multi-Instance Point Cloud Registration in Cluttered Scenes
- Authors: Zhiyuan Yu, Zheng Qin, Lintao Zheng, Kai Xu,
- Abstract summary: We propose MIRETR, a coarse-to-fine approach to the extraction of instance-aware correspondences.
MIRETR outperforms the state of the arts by 16.6 points on F1 score on the challenging ROBI benchmark.
- Score: 15.706413763407056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-instance point cloud registration estimates the poses of multiple instances of a model point cloud in a scene point cloud. Extracting accurate point correspondence is to the center of the problem. Existing approaches usually treat the scene point cloud as a whole, overlooking the separation of instances. Therefore, point features could be easily polluted by other points from the background or different instances, leading to inaccurate correspondences oblivious to separate instances, especially in cluttered scenes. In this work, we propose MIRETR, Multi-Instance REgistration TRansformer, a coarse-to-fine approach to the extraction of instance-aware correspondences. At the coarse level, it jointly learns instance-aware superpoint features and predicts per-instance masks. With instance masks, the influence from outside of the instance being concerned is minimized, such that highly reliable superpoint correspondences can be extracted. The superpoint correspondences are then extended to instance candidates at the fine level according to the instance masks. At last, an efficient candidate selection and refinement algorithm is devised to obtain the final registrations. Extensive experiments on three public benchmarks demonstrate the efficacy of our approach. In particular, MIRETR outperforms the state of the arts by 16.6 points on F1 score on the challenging ROBI benchmark. Code and models are available at https://github.com/zhiyuanYU134/MIRETR.
Related papers
- EipFormer: Emphasizing Instance Positions in 3D Instance Segmentation [51.996943482875366]
We present a novel Transformer-based architecture, EipFormer, which comprises progressive aggregation and dual position embedding.
EipFormer achieves superior or comparable performance compared to state-of-the-art approaches.
arXiv Detail & Related papers (2023-12-09T16:08:47Z) - FreePoint: Unsupervised Point Cloud Instance Segmentation [72.64540130803687]
We propose FreePoint, for underexplored unsupervised class-agnostic instance segmentation on point clouds.
We represent point features by combining coordinates, colors, and self-supervised deep features.
Based on the point features, we segment point clouds into coarse instance masks as pseudo labels, which are used to train a point cloud instance segmentation model.
arXiv Detail & Related papers (2023-05-11T16:56:26Z) - Position-Guided Point Cloud Panoptic Segmentation Transformer [118.17651196656178]
This work begins by applying this appealing paradigm to LiDAR-based point cloud segmentation and obtains a simple yet effective baseline.
We observe that instances in the sparse point clouds are relatively small to the whole scene and often have similar geometry but lack distinctive appearance for segmentation, which are rare in the image domain.
The method, named Position-guided Point cloud Panoptic segmentation transFormer (P3Former), outperforms previous state-of-the-art methods by 3.4% and 1.2% on Semantic KITTI and nuScenes benchmark, respectively.
arXiv Detail & Related papers (2023-03-23T17:59:02Z) - PointCLM: A Contrastive Learning-based Framework for Multi-instance
Point Cloud Registration [4.969636478156443]
PointCLM is a contrastive learning-based framework for mutli-instance point cloud registration.
Our method outperforms the state-of-the-art methods on both synthetic and real datasets by a large margin.
arXiv Detail & Related papers (2022-09-01T04:30:05Z) - Sparse Instance Activation for Real-Time Instance Segmentation [72.23597664935684]
We propose a conceptually novel, efficient, and fully convolutional framework for real-time instance segmentation.
SparseInst has extremely fast inference speed and achieves 40 FPS and 37.9 AP on the COCO benchmark.
arXiv Detail & Related papers (2022-03-24T03:15:39Z) - Masked Discrimination for Self-Supervised Learning on Point Clouds [27.652157544218234]
Masked autoencoding has achieved great success for self-supervised learning in the image and language domains.
Standard backbones like PointNet are unable to properly handle the training versus testing distribution mismatch introduced by masking during training.
We bridge this gap by proposing a discriminative mask pretraining Transformer framework, MaskPoint, for point clouds.
arXiv Detail & Related papers (2022-03-21T17:57:34Z) - Point Cloud Registration using Representative Overlapping Points [10.843159482657303]
We propose ROPNet, a new deep learning model using Representative Overlapping Points with discriminative features for registration.
Specifically, we propose a context-guided module which uses an encoder to extract global features for predicting point overlap score.
Experiments over ModelNet40 using noisy and partially overlapping point clouds show that the proposed method outperforms traditional and learning-based methods.
arXiv Detail & Related papers (2021-07-06T12:52:22Z) - Pointly-Supervised Instance Segmentation [81.34136519194602]
We propose point-based instance-level annotation, a new form of weak supervision for instance segmentation.
It combines the standard bounding box annotation with labeled points that are uniformly sampled inside each bounding box.
In our experiments, Mask R-CNN models trained on COCO, PASCAL VOC, Cityscapes, and LVIS with only 10 annotated points per object achieve 94%--98% of their fully-supervised performance.
arXiv Detail & Related papers (2021-04-13T17:59:40Z) - PointINS: Point-based Instance Segmentation [117.38579097923052]
Mask representation in instance segmentation with Point-of-Interest (PoI) features is challenging because learning a high-dimensional mask feature for each instance requires a heavy computing burden.
We propose an instance-aware convolution, which decomposes this mask representation learning task into two tractable modules.
Along with instance-aware convolution, we propose PointINS, a simple and practical instance segmentation approach.
arXiv Detail & Related papers (2020-03-13T08:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.