Music Recommendation Based on Facial Emotion Recognition
- URL: http://arxiv.org/abs/2404.04654v1
- Date: Sat, 6 Apr 2024 15:14:25 GMT
- Title: Music Recommendation Based on Facial Emotion Recognition
- Authors: Rajesh B, Keerthana V, Narayana Darapaneni, Anwesh Reddy P,
- Abstract summary: This paper presents a comprehensive approach to enhancing the user experience through the integration of emotion recognition, music recommendation, and explainable AI using GRAD-CAM.
The proposed methodology utilizes a ResNet50 model trained on the Facial Expression Recognition dataset, consisting of real images of individuals expressing various emotions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Introduction: Music provides an incredible avenue for individuals to express their thoughts and emotions, while also serving as a delightful mode of entertainment for enthusiasts and music lovers. Objectives: This paper presents a comprehensive approach to enhancing the user experience through the integration of emotion recognition, music recommendation, and explainable AI using GRAD-CAM. Methods: The proposed methodology utilizes a ResNet50 model trained on the Facial Expression Recognition (FER) dataset, consisting of real images of individuals expressing various emotions. Results: The system achieves an accuracy of 82% in emotion classification. By leveraging GRAD-CAM, the model provides explanations for its predictions, allowing users to understand the reasoning behind the system's recommendations. The model is trained on both FER and real user datasets, which include labelled facial expressions, and real images of individuals expressing various emotions. The training process involves pre-processing the input images, extracting features through convolutional layers, reasoning with dense layers, and generating emotion predictions through the output layer Conclusion: The proposed methodology, leveraging the Resnet50 model with ROI-based analysis and explainable AI techniques, offers a robust and interpretable solution for facial emotion detection paper.
Related papers
- Leveraging Previous Facial Action Units Knowledge for Emotion
Recognition on Faces [2.4158349218144393]
We propose the usage of Facial Action Units (AUs) recognition techniques to recognize emotions.
This recognition will be based on the Facial Action Coding System (FACS) and computed by a machine learning system.
arXiv Detail & Related papers (2023-11-20T18:14:53Z) - StyleEDL: Style-Guided High-order Attention Network for Image Emotion
Distribution Learning [69.06749934902464]
We propose a style-guided high-order attention network for image emotion distribution learning termed StyleEDL.
StyleEDL interactively learns stylistic-aware representations of images by exploring the hierarchical stylistic information of visual contents.
In addition, we introduce a stylistic graph convolutional network to dynamically generate the content-dependent emotion representations.
arXiv Detail & Related papers (2023-08-06T03:22:46Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
We propose a novel FER model, named Poker Face Vision Transformer or PF-ViT, to address these challenges.
PF-ViT aims to separate and recognize the disturbance-agnostic emotion from a static facial image via generating its corresponding poker face.
PF-ViT utilizes vanilla Vision Transformers, and its components are pre-trained as Masked Autoencoders on a large facial expression dataset.
arXiv Detail & Related papers (2022-07-22T13:39:06Z) - Emotional Speech Recognition with Pre-trained Deep Visual Models [0.0]
We employ the transfer learning capabilities of the pre-trained computer vision deep models to have a mandate for the emotion recognition in speech task.
In our experiments, we use the pre-trained VGG-16 model and test the overall methodology on the Berlin EMO-DB dataset for speaker-independent emotion recognition.
arXiv Detail & Related papers (2022-04-06T11:27:59Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Deep Semantic Manipulation of Facial Videos [5.048861360606916]
This paper proposes the first method to perform photorealistic manipulation of facial expressions in videos.
Our method supports semantic video manipulation based on neural rendering and 3D-based facial expression modelling.
The proposed method is based on a disentangled representation and estimation of the 3D facial shape and activity.
arXiv Detail & Related papers (2021-11-15T16:55:16Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
We propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images.
To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features.
We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism.
arXiv Detail & Related papers (2021-10-24T02:41:41Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
We propose a stimuli-aware visual emotion analysis (VEA) method consisting of three stages, namely stimuli selection, feature extraction and emotion prediction.
To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network.
Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets.
arXiv Detail & Related papers (2021-09-04T08:14:52Z) - Interpretable Image Emotion Recognition: A Domain Adaptation Approach Using Facial Expressions [11.808447247077902]
This paper proposes a feature-based domain adaptation technique for identifying emotions in generic images.
It addresses the challenge of the limited availability of pre-trained models and well-annotated datasets for Image Emotion Recognition (IER)
The proposed IER system demonstrated emotion classification accuracies of 60.98% for the IAPSa dataset, 58.86% for the ArtPhoto dataset, 69.13% for the FI dataset, and 58.06% for the EMOTIC dataset.
arXiv Detail & Related papers (2020-11-17T02:55:16Z) - Real-time Facial Expression Recognition "In The Wild'' by Disentangling
3D Expression from Identity [6.974241731162878]
This paper proposes a novel method for human emotion recognition from a single RGB image.
We construct a large-scale dataset of facial videos, rich in facial dynamics, identities, expressions, appearance and 3D pose variations.
Our proposed framework runs at 50 frames per second and is capable of robustly estimating parameters of 3D expression variation.
arXiv Detail & Related papers (2020-05-12T01:32:55Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.