Towards Generalized Entropic Sparsification for Convolutional Neural Networks
- URL: http://arxiv.org/abs/2404.04734v1
- Date: Sat, 6 Apr 2024 21:33:39 GMT
- Title: Towards Generalized Entropic Sparsification for Convolutional Neural Networks
- Authors: Tin Barisin, Illia Horenko,
- Abstract summary: Convolutional neural networks (CNNs) are reported to be overparametrized.
Here, we introduce a layer-by-layer data-driven pruning method based on the mathematical idea aiming at a computationally-scalable entropic relaxation of the pruning problem.
The sparse subnetwork is found from the pre-trained (full) CNN using the network entropy minimization as a sparsity constraint.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) are reported to be overparametrized. The search for optimal (minimal) and sufficient architecture is an NP-hard problem as the hyperparameter space for possible network configurations is vast. Here, we introduce a layer-by-layer data-driven pruning method based on the mathematical idea aiming at a computationally-scalable entropic relaxation of the pruning problem. The sparse subnetwork is found from the pre-trained (full) CNN using the network entropy minimization as a sparsity constraint. This allows deploying a numerically scalable algorithm with a sublinear scaling cost. The method is validated on several benchmarks (architectures): (i) MNIST (LeNet) with sparsity 55%-84% and loss in accuracy 0.1%-0.5%, and (ii) CIFAR-10 (VGG-16, ResNet18) with sparsity 73-89% and loss in accuracy 0.1%-0.5%.
Related papers
- Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation [0.0]
A neural network architecture is presented to solve high-dimensional parameter-dependent partial differential equations (pPDEs)
It is constructed to map parameters of the model data to corresponding finite element solutions.
It outputs a coarse grid solution and a series of corrections as produced in an adaptive finite element method (AFEM)
arXiv Detail & Related papers (2024-03-19T11:34:40Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
Trends indicate that deeper and larger neural networks with an increasing number of parameters achieve higher accuracy than smaller neural networks.
We generalize structured pruning with algorithms for network augmentation, pruning, sub-network collapse and removal.
The resulting CNN executes efficiently on GPU hardware without computationally expensive sparse matrix operations.
arXiv Detail & Related papers (2023-08-28T14:19:13Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - A Kernel-Expanded Stochastic Neural Network [10.837308632004644]
Deep neural network often gets trapped into a local minimum in training.
New kernel-expanded neural network (K-StoNet) model reformulates the network as a latent variable model.
Model can be easily trained using the imputationregularized optimization (IRO) algorithm.
arXiv Detail & Related papers (2022-01-14T06:42:42Z) - Hessian Aware Quantization of Spiking Neural Networks [1.90365714903665]
Neuromorphic architecture allows massively parallel computation with variable and local bit-precisions.
Current gradient based methods of SNN training use a complex neuron model with multiple state variables.
We present a simplified neuron model that reduces the number of state variables by 4-fold while still being compatible with gradient based training.
arXiv Detail & Related papers (2021-04-29T05:27:34Z) - Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch [75.69506249886622]
Sparsity in Deep Neural Networks (DNNs) has been widely studied to compress and accelerate the models on resource-constrained environments.
In this paper, we are the first to study training from scratch an N:M fine-grained structured sparse network.
arXiv Detail & Related papers (2021-02-08T05:55:47Z) - ACP: Automatic Channel Pruning via Clustering and Swarm Intelligence
Optimization for CNN [6.662639002101124]
convolutional neural network (CNN) gets deeper and wider in recent years.
Existing magnitude-based pruning methods are efficient, but the performance of the compressed network is unpredictable.
We propose a novel automatic channel pruning method (ACP)
ACP is evaluated against several state-of-the-art CNNs on three different classification datasets.
arXiv Detail & Related papers (2021-01-16T08:56:38Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.