Spin-lattice relaxation with non-linear couplings: Comparison between Fermi's golden rule and extended dissipaton equation of motion
- URL: http://arxiv.org/abs/2404.04803v3
- Date: Thu, 13 Jun 2024 14:02:46 GMT
- Title: Spin-lattice relaxation with non-linear couplings: Comparison between Fermi's golden rule and extended dissipaton equation of motion
- Authors: Rui-Hao Bi, Yu Su, Yao Wang, Lei Sun, Wenjie Dou,
- Abstract summary: Fermi's golden rule (FGR) offers an empirical framework for understanding the dynamics of spin-lattice relaxation in magnetic molecules.
This paper numerically evaluates the exact spin-lattice relaxation rate kernels.
We observe that the temperature dependence predicted by FGR significantly deviates from the exact results since FGR ignores the non-Markovian nature of spin-lattice relaxation.
- Score: 11.386869742194792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fermi's golden rule (FGR) offers an empirical framework for understanding the dynamics of spin-lattice relaxation in magnetic molecules, encompassing mechanisms like direct (one-phonon) and Raman (two-phonon) processes. These principles effectively model experimental longitudinal relaxation rates, denoted as $T_1^{-1}$. However, under scenarios of increased coupling strength and nonlinear spin-lattice interactions, FGR's applicability may diminish. This paper numerically evaluates the exact spin-lattice relaxation rate kernels, employing the extended dissipaton equation of motion (DEOM) formalism. Our calculations reveal that when quadratic spin-lattice coupling is considered, the rate kernels exhibit a free induction decay-like feature, and the damping rates depend on the interaction strength. We observe that the temperature dependence predicted by FGR significantly deviates from the exact results since FGR ignores the non-Markovian nature of spin-lattice relaxation. Our methods can be readily applied to other systems with nonlinear spin-lattice interactions and provide valuable insights into the temperature dependence of $T_1$ in molecular qubits.
Related papers
- Simulating decoherence of coupled two spin qubits using generalized
cluster correlation expansion [2.7354851983299784]
We study the coherence of two coupled spin qubits in the presence of a bath of nuclear spins.
In our model, two electron spin qubits coupled with isotropic exchange or magnetic dipolar interactions interact with an environment of random nuclear spins.
arXiv Detail & Related papers (2024-02-28T21:46:32Z) - Spin relaxation dynamics with a continuous spin environment: the
dissipaton equation of motion approach [11.335986457834348]
We present the quantum dynamics of a spin coupling to a bath of independent spins via the dissipaton equation of motion (DEOM) approach.
We derive the fluctuation-dissipation theorem (FDT) of the spin bath from a microscopic perspective.
We envision this work provides new insights to extend the hierarchical equations of motion (HEOM) and DEOM approach to certain types of anharmonic enviroments.
arXiv Detail & Related papers (2023-02-01T03:47:11Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Temperature-dependent spin-lattice relaxation of the nitrogen-vacancy
spin triplet in diamond [0.0]
We report measurements of the relaxation rates on the nitrogen-vacancy center's electronic ground-state spin triplet.
We show that the temperature dependencies of the rates are reproduced by an ab initio theory of Raman scattering due to second-order spin-phonon interactions.
arXiv Detail & Related papers (2022-09-28T22:05:51Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Spin relaxation in radical pairs from the stochastic Schr\"odinger
equation [0.0]
We show that the Schr"odinger equation (SSE) provides an ideal way to simulate the quantum mechanical spin dynamics of radical pairs.
Electron spin relaxation effects arising from fluctuations in the spinjima Hamiltonian are included in this approach.
Results are used to assess the accuracy of a recently-proposed combination of Naka-Zwanzig theory for the spin relaxation and Schulten-Wolynes theory for the spin dynamics.
arXiv Detail & Related papers (2021-02-26T12:34:34Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Dissipative dynamics of an interacting spin system with collective
damping [1.3980986259786221]
Hamiltonian and Lindblad dynamics in quantum systems give rise to non-equillibrium phenomena.
In this paper, we investigate this interplay of dynamics in infinite range Heisenberg model coupled to a non-Markovian bath.
arXiv Detail & Related papers (2018-03-03T14:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.