Gradient-based Design of Computational Granular Crystals
- URL: http://arxiv.org/abs/2404.04825v1
- Date: Sun, 7 Apr 2024 06:24:47 GMT
- Title: Gradient-based Design of Computational Granular Crystals
- Authors: Atoosa Parsa, Corey S. O'Hern, Rebecca Kramer-Bottiglio, Josh Bongard,
- Abstract summary: We build upon the similarity between thetemporal dynamics of wave propagation in material and the computational dynamics of Recurrent Neural Networks to develop a gradient-based optimization framework for harmonically driven granular crystals.
Our findings show that a gradient-based optimization method can greatly expand the intrinsic design space of metamaterials.
- Score: 0.22499166814992436
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There is growing interest in engineering unconventional computing devices that leverage the intrinsic dynamics of physical substrates to perform fast and energy-efficient computations. Granular metamaterials are one such substrate that has emerged as a promising platform for building wave-based information processing devices with the potential to integrate sensing, actuation, and computation. Their high-dimensional and nonlinear dynamics result in nontrivial and sometimes counter-intuitive wave responses that can be shaped by the material properties, geometry, and configuration of individual grains. Such highly tunable rich dynamics can be utilized for mechanical computing in special-purpose applications. However, there are currently no general frameworks for the inverse design of large-scale granular materials. Here, we build upon the similarity between the spatiotemporal dynamics of wave propagation in material and the computational dynamics of Recurrent Neural Networks to develop a gradient-based optimization framework for harmonically driven granular crystals. We showcase how our framework can be utilized to design basic logic gates where mechanical vibrations carry the information at predetermined frequencies. We compare our design methodology with classic gradient-free methods and find that our approach discovers higher-performing configurations with less computational effort. Our findings show that a gradient-based optimization method can greatly expand the design space of metamaterials and provide the opportunity to systematically traverse the parameter space to find materials with the desired functionalities.
Related papers
- Phononic materials with effectively scale-separated hierarchical features using interpretable machine learning [57.91994916297646]
Architected hierarchical phononic materials have sparked promise tunability of elastodynamic waves and vibrations over multiple frequency ranges.
In this article, hierarchical unit-cells are obtained, where features at each length scale result in a band gap within a targeted frequency range.
Our approach offers a flexible and efficient method for the exploration of new regions in the hierarchical design space.
arXiv Detail & Related papers (2024-08-15T21:35:06Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for
Geometry-Agnostic System Identification [64.61198351207752]
Existing approaches to system identification (estimating the physical parameters of an object) from videos assume known object geometries.
In this work, we aim to identify parameters characterizing a physical system from a set of multi-view videos without any assumption on object geometry or topology.
We propose "Physics Augmented Continuum Neural Radiance Fields" (PAC-NeRF), to estimate both the unknown geometry and physical parameters of highly dynamic objects from multi-view videos.
arXiv Detail & Related papers (2023-03-09T18:59:50Z) - Physics-Constrained Neural Network for Design and Feature-Based
Optimization of Weave Architectures [0.6144680854063939]
We present a novel Physics-Constrained Neural Network (PCNN) to predict the mechanical properties of weave architectures.
We show that the proposed PCNN can effectively predict weave architecture for the desired modulus with higher accuracy than several baseline models considered.
arXiv Detail & Related papers (2022-09-19T16:16:45Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Learning the nonlinear dynamics of soft mechanical metamaterials with
graph networks [3.609538870261841]
We propose a machine learning approach to study the dynamics of soft mechanical metamaterials.
The proposed approach can significantly reduce the computational cost when compared to direct numerical simulation.
arXiv Detail & Related papers (2022-02-24T00:20:28Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Gradient-Based Training and Pruning of Radial Basis Function Networks
with an Application in Materials Physics [0.24792948967354234]
We propose a gradient-based technique for training radial basis function networks with an efficient and scalable open-source implementation.
We derive novel closed-form optimization criteria for pruning the models for continuous as well as binary data.
arXiv Detail & Related papers (2020-04-06T11:32:37Z) - Machine Learning Enabled Discovery of Application Dependent Design
Principles for Two-dimensional Materials [1.1470070927586016]
We train an ensemble of models to predict thermodynamic, mechanical, and electronic properties.
We carry out a screening of nearly 45,000 structures for two largely disjoint applications.
We find that hybrid organic-inorganic perovskites with lead and tin tend to be good candidates for solar cell applications.
arXiv Detail & Related papers (2020-03-19T23:13:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.