Demystifying Lazy Training of Neural Networks from a Macroscopic Viewpoint
- URL: http://arxiv.org/abs/2404.04859v1
- Date: Sun, 7 Apr 2024 08:07:02 GMT
- Title: Demystifying Lazy Training of Neural Networks from a Macroscopic Viewpoint
- Authors: Yuqing Li, Tao Luo, Qixuan Zhou,
- Abstract summary: We study the gradient descent dynamics of neural networks through the lens of macroscopic limits.
Our study reveals that gradient descent can rapidly drive deep neural networks to zero training loss.
Our approach draws inspiration from the Neural Tangent Kernel (NTK) paradigm.
- Score: 5.9954962391837885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we advance the understanding of neural network training dynamics by examining the intricate interplay of various factors introduced by weight parameters in the initialization process. Motivated by the foundational work of Luo et al. (J. Mach. Learn. Res., Vol. 22, Iss. 1, No. 71, pp 3327-3373), we explore the gradient descent dynamics of neural networks through the lens of macroscopic limits, where we analyze its behavior as width $m$ tends to infinity. Our study presents a unified approach with refined techniques designed for multi-layer fully connected neural networks, which can be readily extended to other neural network architectures. Our investigation reveals that gradient descent can rapidly drive deep neural networks to zero training loss, irrespective of the specific initialization schemes employed by weight parameters, provided that the initial scale of the output function $\kappa$ surpasses a certain threshold. This regime, characterized as the theta-lazy area, accentuates the predominant influence of the initial scale $\kappa$ over other factors on the training behavior of neural networks. Furthermore, our approach draws inspiration from the Neural Tangent Kernel (NTK) paradigm, and we expand its applicability. While NTK typically assumes that $\lim_{m\to\infty}\frac{\log \kappa}{\log m}=\frac{1}{2}$, and imposes each weight parameters to scale by the factor $\frac{1}{\sqrt{m}}$, in our theta-lazy regime, we discard the factor and relax the conditions to $\lim_{m\to\infty}\frac{\log \kappa}{\log m}>0$. Similar to NTK, the behavior of overparameterized neural networks within the theta-lazy regime trained by gradient descent can be effectively described by a specific kernel. Through rigorous analysis, our investigation illuminates the pivotal role of $\kappa$ in governing the training dynamics of neural networks.
Related papers
- Convergence of Gradient Descent for Recurrent Neural Networks: A Nonasymptotic Analysis [16.893624100273108]
We analyze recurrent neural networks with diagonal hidden-to-hidden weight matrices trained with gradient descent in the supervised learning setting.
We prove that gradient descent can achieve optimality emphwithout massive over parameterization.
Our results are based on an explicit characterization of the class of dynamical systems that can be approximated and learned by recurrent neural networks.
arXiv Detail & Related papers (2024-02-19T15:56:43Z) - Speed Limits for Deep Learning [67.69149326107103]
Recent advancement in thermodynamics allows bounding the speed at which one can go from the initial weight distribution to the final distribution of the fully trained network.
We provide analytical expressions for these speed limits for linear and linearizable neural networks.
Remarkably, given some plausible scaling assumptions on the NTK spectra and spectral decomposition of the labels -- learning is optimal in a scaling sense.
arXiv Detail & Related papers (2023-07-27T06:59:46Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - A Convergence Analysis of Nesterov's Accelerated Gradient Method in
Training Deep Linear Neural Networks [21.994004684742812]
Momentum methods are widely used in training networks for their fast trajectory.
We show that the convergence of the random number and $kappaO can converge to the global minimum.
We extend our analysis to deep linear ResNets and derive a similar result.
arXiv Detail & Related papers (2022-04-18T13:24:12Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Training Integrable Parameterizations of Deep Neural Networks in the
Infinite-Width Limit [0.0]
Large-width dynamics has emerged as a fruitful viewpoint and led to practical insights on real-world deep networks.
For two-layer neural networks, it has been understood that the nature of the trained model radically changes depending on the scale of the initial random weights.
We propose various methods to avoid this trivial behavior and analyze in detail the resulting dynamics.
arXiv Detail & Related papers (2021-10-29T07:53:35Z) - Towards an Understanding of Residual Networks Using Neural Tangent
Hierarchy (NTH) [2.50686294157537]
Gradient descent yields zero loss in time for deep training networks despite non- infinite nature of the objective function.
In this paper, we trained neural dynamics of the NTK for finite width ResNet using Deep Residual Network (ResNet)
Our analysis suggests strongly that the particular neural-connection structure ResNet is the main reason for its triumph.
arXiv Detail & Related papers (2020-07-07T18:08:16Z) - A Generalized Neural Tangent Kernel Analysis for Two-layer Neural
Networks [87.23360438947114]
We show that noisy gradient descent with weight decay can still exhibit a " Kernel-like" behavior.
This implies that the training loss converges linearly up to a certain accuracy.
We also establish a novel generalization error bound for two-layer neural networks trained by noisy gradient descent with weight decay.
arXiv Detail & Related papers (2020-02-10T18:56:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.