Texture Classification Network Integrating Adaptive Wavelet Transform
- URL: http://arxiv.org/abs/2404.05300v1
- Date: Mon, 8 Apr 2024 08:42:47 GMT
- Title: Texture Classification Network Integrating Adaptive Wavelet Transform
- Authors: Su-Xi Yu, Jing-Yuan He, Yi Wang, Yu-Jiao Cai, Jun Yang, Bo Lin, Wei-Bin Yang, Jian Ruan,
- Abstract summary: Graves' disease is a common condition that is diagnosed clinically by determining the smoothness of the thyroid texture in ultrasound images.
Currently, the most widely used approach for the automated diagnosis of Graves' disease utilizes Convolutional Neural Networks (CNNs) for both feature extraction and classification.
This research integrates learnable wavelet modules utilizing the Lifting Scheme into CNNs and incorporates a parallel wavelet branch into the ResNet18 model to enhance texture feature extraction.
- Score: 7.634818631225403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graves' disease is a common condition that is diagnosed clinically by determining the smoothness of the thyroid texture and its morphology in ultrasound images. Currently, the most widely used approach for the automated diagnosis of Graves' disease utilizes Convolutional Neural Networks (CNNs) for both feature extraction and classification. However, these methods demonstrate limited efficacy in capturing texture features. Given the high capacity of wavelets in describing texture features, this research integrates learnable wavelet modules utilizing the Lifting Scheme into CNNs and incorporates a parallel wavelet branch into the ResNet18 model to enhance texture feature extraction. Our model can analyze texture features in spatial and frequency domains simultaneously, leading to optimized classification accuracy. We conducted experiments on collected ultrasound datasets and publicly available natural image texture datasets, our proposed network achieved 97.27% accuracy and 95.60% recall on ultrasound datasets, 60.765% accuracy on natural image texture datasets, surpassing the accuracy of ResNet and conrming the effectiveness of our approach.
Related papers
- Feature-to-Image Data Augmentation: Improving Model Feature Extraction with Cluster-Guided Synthetic Samples [4.041834517339835]
This study introduces FICAug, a novel feature-to-image data augmentation framework.
It is designed to improve model generalization under limited data conditions by generating structured synthetic samples.
Experimental results demonstrate that FICAug significantly improves classification accuracy.
arXiv Detail & Related papers (2024-09-26T09:51:08Z) - Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
Histopathology image classification is crucial for the accurate identification and diagnosis of various diseases.
We show that synthetic images can effectively augment existing datasets, ultimately improving the performance of the downstream histopathology image classification task.
arXiv Detail & Related papers (2024-09-24T12:02:55Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
Volume sweep imaging (VSI) is an innovative approach that enables untrained operators to capture quality ultrasound images.
We present a novel segmentation model known as Wavelet_Attention_UNet (WATUNet)
In this model, we incorporate wavelet gates (WGs) and attention gates (AGs) between the encoder and decoder instead of a simple connection to overcome the limitations mentioned.
arXiv Detail & Related papers (2023-11-17T20:32:37Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Learning Ultrasound Rendering from Cross-Sectional Model Slices for
Simulated Training [13.640630434743837]
Computational simulations can facilitate the training of such skills in virtual reality.
We propose herein to bypass any rendering and simulation process at interactive time.
We use a generative adversarial framework with a dedicated generator architecture and input feeding scheme.
arXiv Detail & Related papers (2021-01-20T21:58:19Z) - Automatic Recognition of the Supraspinatus Tendinopathy from Ultrasound
Images using Convolutional Neural Networks [1.021325814813899]
An automatic tendinopathy recognition framework based on convolutional neural networks has been proposed.
Tendon segmentation is done through a novel network, NASUNet.
A general classification pipeline has been proposed for tendinopathy recognition.
arXiv Detail & Related papers (2020-11-23T22:41:41Z) - Gastric histopathology image segmentation using a hierarchical
conditional random field [16.920864110707747]
A novel Conditional Random Field (HCRF) based Gastric Histopathology Image (GHIS) method is proposed.
Our HCRF model demonstrates high segmentation performance and shows its effectiveness and future potential in the GHIS field.
arXiv Detail & Related papers (2020-03-03T02:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.