Two Hands Are Better Than One: Resolving Hand to Hand Intersections via Occupancy Networks
- URL: http://arxiv.org/abs/2404.05414v1
- Date: Mon, 8 Apr 2024 11:32:26 GMT
- Title: Two Hands Are Better Than One: Resolving Hand to Hand Intersections via Occupancy Networks
- Authors: Maksym Ivashechkin, Oscar Mendez, Richard Bowden,
- Abstract summary: Self-occlusions and finger articulation pose a significant problem to estimation.
We exploit an occupancy network that represents the hand's volume as a continuous manifold.
We design an intersection loss function to minimize the likelihood of hand-to-point intersections.
- Score: 33.9893684177763
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D hand pose estimation from images has seen considerable interest from the literature, with new methods improving overall 3D accuracy. One current challenge is to address hand-to-hand interaction where self-occlusions and finger articulation pose a significant problem to estimation. Little work has applied physical constraints that minimize the hand intersections that occur as a result of noisy estimation. This work addresses the intersection of hands by exploiting an occupancy network that represents the hand's volume as a continuous manifold. This allows us to model the probability distribution of points being inside a hand. We designed an intersection loss function to minimize the likelihood of hand-to-point intersections. Moreover, we propose a new hand mesh parameterization that is superior to the commonly used MANO model in many respects including lower mesh complexity, underlying 3D skeleton extraction, watertightness, etc. On the benchmark InterHand2.6M dataset, the models trained using our intersection loss achieve better results than the state-of-the-art by significantly decreasing the number of hand intersections while lowering the mean per-joint positional error. Additionally, we demonstrate superior performance for 3D hand uplift on Re:InterHand and SMILE datasets and show reduced hand-to-hand intersections for complex domains such as sign-language pose estimation.
Related papers
- HandDiff: 3D Hand Pose Estimation with Diffusion on Image-Point Cloud [60.47544798202017]
Hand pose estimation is a critical task in various human-computer interaction applications.
This paper proposes HandDiff, a diffusion-based hand pose estimation model that iteratively denoises accurate hand pose conditioned on hand-shaped image-point clouds.
Experimental results demonstrate that the proposed HandDiff significantly outperforms the existing approaches on four challenging hand pose benchmark datasets.
arXiv Detail & Related papers (2024-04-04T02:15:16Z) - 3D Hand Reconstruction via Aggregating Intra and Inter Graphs Guided by
Prior Knowledge for Hand-Object Interaction Scenario [8.364378460776832]
We propose a 3D hand reconstruction network combining the benefits of model-based and model-free approaches to balance accuracy and physical plausibility for hand-object interaction scenario.
Firstly, we present a novel MANO pose parameters regression module from 2D joints directly, which avoids the process of highly nonlinear mapping from abstract image feature.
arXiv Detail & Related papers (2024-03-04T05:11:26Z) - Deformer: Dynamic Fusion Transformer for Robust Hand Pose Estimation [59.3035531612715]
Existing methods often struggle to generate plausible hand poses when the hand is heavily occluded or blurred.
In videos, the movements of the hand allow us to observe various parts of the hand that may be occluded or blurred in a single frame.
We propose the Deformer: a framework that implicitly reasons about the relationship between hand parts within the same image.
arXiv Detail & Related papers (2023-03-09T02:24:30Z) - 3D Interacting Hand Pose Estimation by Hand De-occlusion and Removal [85.30756038989057]
Estimating 3D interacting hand pose from a single RGB image is essential for understanding human actions.
We propose to decompose the challenging interacting hand pose estimation task and estimate the pose of each hand separately.
Experiments show that the proposed method significantly outperforms previous state-of-the-art interacting hand pose estimation approaches.
arXiv Detail & Related papers (2022-07-22T13:04:06Z) - End-to-end Weakly-supervised Single-stage Multiple 3D Hand Mesh
Reconstruction from a Single RGB Image [9.238322841389994]
We propose a single-stage pipeline for multi-hand reconstruction.
Specifically, we design a multi-head auto-encoder structure, where each head network shares the same feature map and outputs the hand center, pose and texture.
Our method outperforms the state-of-the-art model-based methods in both weakly-supervised and fully-supervised manners.
arXiv Detail & Related papers (2022-04-18T03:57:14Z) - HandOccNet: Occlusion-Robust 3D Hand Mesh Estimation Network [57.206129938611454]
We propose a novel 3D hand mesh estimation network HandOccNet.
By injecting the hand information to the occluded region, our HandOccNet reaches the state-of-the-art performance on 3D hand mesh benchmarks.
arXiv Detail & Related papers (2022-03-28T08:12:16Z) - Monocular 3D Reconstruction of Interacting Hands via Collision-Aware
Factorized Refinements [96.40125818594952]
We make the first attempt to reconstruct 3D interacting hands from monocular single RGB images.
Our method can generate 3D hand meshes with both precise 3D poses and minimal collisions.
arXiv Detail & Related papers (2021-11-01T08:24:10Z) - HandFoldingNet: A 3D Hand Pose Estimation Network Using
Multiscale-Feature Guided Folding of a 2D Hand Skeleton [4.1954750695245835]
This paper proposes HandFoldingNet, an accurate and efficient hand pose estimator.
The proposed model utilizes a folding-based decoder that folds a given 2D hand skeleton into the corresponding joint coordinates.
Experimental results show that the proposed model outperforms the existing methods on three hand pose benchmark datasets.
arXiv Detail & Related papers (2021-08-12T05:52:44Z) - InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose
Estimation from a Single RGB Image [71.17227941339935]
We propose a large-scale dataset, InterHand2.6M, and a network, InterNet, for 3D interacting hand pose estimation from a single RGB image.
In our experiments, we demonstrate big gains in 3D interacting hand pose estimation accuracy when leveraging the interacting hand data in InterHand2.6M.
We also report the accuracy of InterNet on InterHand2.6M, which serves as a strong baseline for this new dataset.
arXiv Detail & Related papers (2020-08-21T05:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.