AlignZeg: Mitigating Objective Misalignment for Zero-shot Semantic Segmentation
- URL: http://arxiv.org/abs/2404.05667v1
- Date: Mon, 8 Apr 2024 16:51:33 GMT
- Title: AlignZeg: Mitigating Objective Misalignment for Zero-shot Semantic Segmentation
- Authors: Jiannan Ge, Lingxi Xie, Hongtao Xie, Pandeng Li, Xiaopeng Zhang, Yongdong Zhang, Qi Tian,
- Abstract summary: A serious issue that harms the performance of zero-shot visual recognition is named objective misalignment.
We propose a novel architecture named AlignZeg, which embodies a comprehensive improvement of the segmentation pipeline.
Experiments demonstrate that AlignZeg markedly enhances zero-shot semantic segmentation.
- Score: 123.88875931128342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A serious issue that harms the performance of zero-shot visual recognition is named objective misalignment, i.e., the learning objective prioritizes improving the recognition accuracy of seen classes rather than unseen classes, while the latter is the true target to pursue. This issue becomes more significant in zero-shot image segmentation because the stronger (i.e., pixel-level) supervision brings a larger gap between seen and unseen classes. To mitigate it, we propose a novel architecture named AlignZeg, which embodies a comprehensive improvement of the segmentation pipeline, including proposal extraction, classification, and correction, to better fit the goal of zero-shot segmentation. (1) Mutually-Refined Proposal Extraction. AlignZeg harnesses a mutual interaction between mask queries and visual features, facilitating detailed class-agnostic mask proposal extraction. (2) Generalization-Enhanced Proposal Classification. AlignZeg introduces synthetic data and incorporates multiple background prototypes to allocate a more generalizable feature space. (3) Predictive Bias Correction. During the inference stage, AlignZeg uses a class indicator to find potential unseen class proposals followed by a prediction postprocess to correct the prediction bias. Experiments demonstrate that AlignZeg markedly enhances zero-shot semantic segmentation, as shown by an average 3.8% increase in hIoU, primarily attributed to a 7.1% improvement in identifying unseen classes, and we further validate that the improvement comes from alleviating the objective misalignment issue.
Related papers
- Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems [61.11799513362704]
We propose learning an additional screening mechanism to identify discriminative clues commonly seen across instances and classes.
We show that a common rationale detector can be learned by simply exploiting the GradCAM induced from the SSL objective.
arXiv Detail & Related papers (2023-03-03T02:07:40Z) - A Knowledge-based Learning Framework for Self-supervised Pre-training
Towards Enhanced Recognition of Medical Images [14.304996977665212]
This study proposes a knowledge-based learning framework towards enhanced recognition of medical images.
It works in three phases by synergizing contrastive learning and generative learning models.
The proposed framework statistically excels in self-supervised benchmarks, achieving 2.08, 1.23, 1.12, 0.76 and 1.38 percentage points improvements over SimCLR in AUC/Dice.
arXiv Detail & Related papers (2022-11-27T03:58:58Z) - Fine-Grained Visual Classification using Self Assessment Classifier [12.596520707449027]
Extracting discriminative features plays a crucial role in the fine-grained visual classification task.
In this paper, we introduce a Self Assessment, which simultaneously leverages the representation of the image and top-k prediction classes.
We show that our method achieves new state-of-the-art results on CUB200-2011, Stanford Dog, and FGVC Aircraft datasets.
arXiv Detail & Related papers (2022-05-21T07:41:27Z) - Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [63.910211095033596]
Recently few-shot segmentation (FSS) has been extensively developed.
This paper proposes a fresh and straightforward insight to alleviate the problem.
In light of the unique nature of the proposed approach, we also extend it to a more realistic but challenging setting.
arXiv Detail & Related papers (2022-03-15T03:08:27Z) - Exploring Feature Representation Learning for Semi-supervised Medical
Image Segmentation [30.608293915653558]
We present a two-stage framework for semi-supervised medical image segmentation.
Key insight is to explore the feature representation learning with labeled and unlabeled (i.e., pseudo labeled) images.
A stage-adaptive contrastive learning method is proposed, containing a boundary-aware contrastive loss.
We present an aleatoric uncertainty-aware method, namely AUA, to generate higher-quality pseudo labels.
arXiv Detail & Related papers (2021-11-22T05:06:12Z) - Unsupervised Part Discovery from Contrastive Reconstruction [90.88501867321573]
The goal of self-supervised visual representation learning is to learn strong, transferable image representations.
We propose an unsupervised approach to object part discovery and segmentation.
Our method yields semantic parts consistent across fine-grained but visually distinct categories.
arXiv Detail & Related papers (2021-11-11T17:59:42Z) - Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic
Segmentation [25.070027668717422]
Generalized zero-shot semantic segmentation (GZS3) predicts pixel-wise semantic labels for seen and unseen classes.
Most GZS3 methods adopt a generative approach that synthesizes visual features of unseen classes from corresponding semantic ones.
We propose a discriminative approach to address limitations in a unified framework.
arXiv Detail & Related papers (2021-08-14T13:33:58Z) - Flip Learning: Erase to Segment [65.84901344260277]
Weakly-supervised segmentation (WSS) can help reduce time-consuming and cumbersome manual annotation.
We propose a novel and general WSS framework called Flip Learning, which only needs the box annotation.
Our proposed approach achieves competitive performance and shows great potential to narrow the gap between fully-supervised and weakly-supervised learning.
arXiv Detail & Related papers (2021-08-02T09:56:10Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.