Comprehensive Study on German Language Models for Clinical and Biomedical Text Understanding
- URL: http://arxiv.org/abs/2404.05694v2
- Date: Wed, 8 May 2024 08:53:53 GMT
- Title: Comprehensive Study on German Language Models for Clinical and Biomedical Text Understanding
- Authors: Ahmad Idrissi-Yaghir, Amin Dada, Henning Schäfer, Kamyar Arzideh, Giulia Baldini, Jan Trienes, Max Hasin, Jeanette Bewersdorff, Cynthia S. Schmidt, Marie Bauer, Kaleb E. Smith, Jiang Bian, Yonghui Wu, Jörg Schlötterer, Torsten Zesch, Peter A. Horn, Christin Seifert, Felix Nensa, Jens Kleesiek, Christoph M. Friedrich,
- Abstract summary: We pre-trained several German medical language models on 2.4B tokens derived from translated public English medical data and 3B tokens of German clinical data.
The resulting models were evaluated on various German downstream tasks, including named entity recognition (NER), multi-label classification, and extractive question answering.
We conclude that continuous pre-training has demonstrated the ability to match or even exceed the performance of clinical models trained from scratch.
- Score: 16.220303664681172
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances in natural language processing (NLP) can be largely attributed to the advent of pre-trained language models such as BERT and RoBERTa. While these models demonstrate remarkable performance on general datasets, they can struggle in specialized domains such as medicine, where unique domain-specific terminologies, domain-specific abbreviations, and varying document structures are common. This paper explores strategies for adapting these models to domain-specific requirements, primarily through continuous pre-training on domain-specific data. We pre-trained several German medical language models on 2.4B tokens derived from translated public English medical data and 3B tokens of German clinical data. The resulting models were evaluated on various German downstream tasks, including named entity recognition (NER), multi-label classification, and extractive question answering. Our results suggest that models augmented by clinical and translation-based pre-training typically outperform general domain models in medical contexts. We conclude that continuous pre-training has demonstrated the ability to match or even exceed the performance of clinical models trained from scratch. Furthermore, pre-training on clinical data or leveraging translated texts have proven to be reliable methods for domain adaptation in medical NLP tasks.
Related papers
- Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Enhancing Medical Specialty Assignment to Patients using NLP Techniques [0.0]
We propose an alternative approach that achieves superior performance while being computationally efficient.
Specifically, we utilize keywords to train a deep learning architecture that outperforms a language model pretrained on a large corpus of text.
Our results demonstrate that utilizing keywords for text classification significantly improves classification performance.
arXiv Detail & Related papers (2023-12-09T14:13:45Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
We investigate cross-lingual knowledge transfer strategies to execute this task for clinics that do not use the English language.
We evaluate these strategies for a Greek and a Spanish clinic leveraging clinical notes from different clinical domains.
Our results show that using multilingual data overall improves clinical phenotyping models and can compensate for data sparseness.
arXiv Detail & Related papers (2022-08-03T08:33:21Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
This work proposes the first to our knowledge systematic study of formality detection methods based on statistical, neural-based, and Transformer-based machine learning methods.
We conducted three types of experiments -- monolingual, multilingual, and cross-lingual.
The study shows the overcome of Char BiLSTM model over Transformer-based ones for the monolingual and multilingual formality classification task.
arXiv Detail & Related papers (2022-04-19T16:23:07Z) - CLIN-X: pre-trained language models and a study on cross-task transfer
for concept extraction in the clinical domain [22.846469609263416]
We introduce the pre-trained CLIN-X (Clinical XLM-R) language models and show how CLIN-X outperforms other pre-trained transformer models.
Our studies reveal stable model performance despite a lack of annotated data with improvements of up to 47 F1 points when only 250 labeled sentences are available.
Our results highlight the importance of specialized language models as CLIN-X for concept extraction in non-standard domains.
arXiv Detail & Related papers (2021-12-16T10:07:39Z) - GERNERMED -- An Open German Medical NER Model [0.7310043452300736]
Data mining in the field of medical data analysis often needs to rely solely on processing of unstructured data to retrieve relevant data.
In this work, we present GERNERMED, the first open, neural NLP model for NER tasks dedicated to detect medical entity types in German text data.
arXiv Detail & Related papers (2021-09-24T17:53:47Z) - Biomedical and Clinical Language Models for Spanish: On the Benefits of
Domain-Specific Pretraining in a Mid-Resource Scenario [0.05277024349608833]
This work presents biomedical and clinical language models for Spanish by experimenting with different pretraining choices.
In the absence of enough clinical data to train a model from scratch, we applied mixed-domain pretraining and cross-domain transfer approaches to generate a performant bio-clinical model.
arXiv Detail & Related papers (2021-09-08T12:12:07Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual
Embeddings Using the Unified Medical Language System Metathesaurus [73.86656026386038]
We introduce UmlsBERT, a contextual embedding model that integrates domain knowledge during the pre-training process.
By applying these two strategies, UmlsBERT can encode clinical domain knowledge into word embeddings and outperform existing domain-specific models.
arXiv Detail & Related papers (2020-10-20T15:56:31Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
We show that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains.
Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks.
arXiv Detail & Related papers (2020-07-31T00:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.