Towards Explainable Automated Neuroanatomy
- URL: http://arxiv.org/abs/2404.05814v1
- Date: Mon, 8 Apr 2024 18:36:18 GMT
- Title: Towards Explainable Automated Neuroanatomy
- Authors: Kui Qian, Litao Qiao, Beth Friedman, Edward O'Donnell, David Kleinfeld, Yoav Freund,
- Abstract summary: We present a novel method for quantifying the microscopic structure of brain tissue.
It is based on the automated recognition of interpretable features obtained by analyzing the shapes of cells.
- Score: 2.550915739937055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel method for quantifying the microscopic structure of brain tissue. It is based on the automated recognition of interpretable features obtained by analyzing the shapes of cells. This contrasts with prevailing methods of brain anatomical analysis in two ways. First, contemporary methods use gray-scale values derived from smoothed version of the anatomical images, which dissipated valuable information from the texture of the images. Second, contemporary analysis uses the output of black-box Convolutional Neural Networks, while our system makes decisions based on interpretable features obtained by analyzing the shapes of individual cells. An important benefit of this open-box approach is that the anatomist can understand and correct the decisions made by the computer. Our proposed system can accurately localize and identify existing brain structures. This can be used to align and coregistar brains and will facilitate connectomic studies for reverse engineering of brain circuitry.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - NCIS: Deep Color Gradient Maps Regression and Three-Class Pixel
Classification for Enhanced Neuronal Cell Instance Segmentation in
Nissl-Stained Histological Images [0.5273938705774914]
This paper presents an end-to-end framework to automatically segment single neuronal cells in Nissl-stained histological images of the brain.
A U-Net-like architecture with an EfficientNet as the encoder and two decoding branches is exploited to regress four gradient color maps and classify pixels into contours between touching cells, cell bodies, or background.
The method was tested on images of the cerebral cortex and cerebellum, outperforming other recent deep-learning-based approaches for the instance segmentation of cells.
arXiv Detail & Related papers (2023-06-27T20:22:04Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Analysis of Explainable Artificial Intelligence Methods on Medical Image
Classification [0.0]
The use of deep learning in computer vision tasks such as image classification has led to a rapid increase in the performance of such systems.
Medical image classification systems are being adopted due to their high accuracy and near parity with human physicians in many tasks.
The research techniques being used to gain insight into the black-box models are in the field of explainable artificial intelligence (XAI)
arXiv Detail & Related papers (2022-12-10T06:17:43Z) - Automatic Quantitative Analysis of Brain Organoids via Deep Learning [0.0]
We propose an automated computer-assisted analysis method for brain organoid slice channels tagged with different fluorescent.
The experiment result shows an obvious difference between Wild Type and Mutant Type cerebral organoids.
arXiv Detail & Related papers (2022-11-01T21:10:28Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
We develop a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains.
Experiments show that the prediction performance via our model outperforms other state-of-the-art models.
arXiv Detail & Related papers (2022-05-21T14:08:53Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
We develop a framework for cortical surface-based deep learning.
First, we adapted a perturbation-based approach for use with surface data.
We show that our explainability framework is not only able to identify important features and their spatial location but that it is also reliable and valid.
arXiv Detail & Related papers (2022-03-15T23:16:49Z) - Contrastive Representation Learning for Whole Brain Cytoarchitectonic
Mapping in Histological Human Brain Sections [0.4588028371034407]
We propose a contrastive learning objective for encoding microscopic image patches into robust microstructural features.
We show that a model pre-trained using this learning task outperforms a model trained from scratch, as well as a model pre-trained on a recently proposed auxiliary task.
arXiv Detail & Related papers (2020-11-25T16:44:23Z) - Convolutional Neural Networks for cytoarchitectonic brain mapping at
large scale [0.33727511459109777]
We present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains.
It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between.
The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts.
arXiv Detail & Related papers (2020-11-25T16:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.