A Neuromorphic Approach to Obstacle Avoidance in Robot Manipulation
- URL: http://arxiv.org/abs/2404.05858v1
- Date: Mon, 8 Apr 2024 20:42:10 GMT
- Title: A Neuromorphic Approach to Obstacle Avoidance in Robot Manipulation
- Authors: Ahmed Faisal Abdelrahman, Matias Valdenegro-Toro, Maren Bennewitz, Paul G. Plöger,
- Abstract summary: We develop a neuromorphic approach to obstacle avoidance on a camera-equipped manipulator.
Our approach adapts high-level trajectory plans with reactive maneuvers by processing emulated event data in a convolutional SNN.
Our results motivate incorporating SNN learning, utilizing neuromorphic processors, and further exploring the potential of neuromorphic methods.
- Score: 16.696524554516294
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Neuromorphic computing mimics computational principles of the brain in $\textit{silico}$ and motivates research into event-based vision and spiking neural networks (SNNs). Event cameras (ECs) exclusively capture local intensity changes and offer superior power consumption, response latencies, and dynamic ranges. SNNs replicate biological neuronal dynamics and have demonstrated potential as alternatives to conventional artificial neural networks (ANNs), such as in reducing energy expenditure and inference time in visual classification. Nevertheless, these novel paradigms remain scarcely explored outside the domain of aerial robots. To investigate the utility of brain-inspired sensing and data processing, we developed a neuromorphic approach to obstacle avoidance on a camera-equipped manipulator. Our approach adapts high-level trajectory plans with reactive maneuvers by processing emulated event data in a convolutional SNN, decoding neural activations into avoidance motions, and adjusting plans using a dynamic motion primitive. We conducted experiments with a Kinova Gen3 arm performing simple reaching tasks that involve obstacles in sets of distinct task scenarios and in comparison to a non-adaptive baseline. Our neuromorphic approach facilitated reliable avoidance of imminent collisions in simulated and real-world experiments, where the baseline consistently failed. Trajectory adaptations had low impacts on safety and predictability criteria. Among the notable SNN properties were the correlation of computations with the magnitude of perceived motions and a robustness to different event emulation methods. Tests with a DAVIS346 EC showed similar performance, validating our experimental event emulation. Our results motivate incorporating SNN learning, utilizing neuromorphic processors, and further exploring the potential of neuromorphic methods.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Learning low-dimensional dynamics from whole-brain data improves task
capture [2.82277518679026]
We introduce a novel approach to learning low-dimensional approximations of neural dynamics by using a sequential variational autoencoder (SVAE)
Our method finds smooth dynamics that can predict cognitive processes with accuracy higher than classical methods.
We evaluate our approach on various task-fMRI datasets, including motor, working memory, and relational processing tasks.
arXiv Detail & Related papers (2023-05-18T18:43:13Z) - From Data-Fitting to Discovery: Interpreting the Neural Dynamics of
Motor Control through Reinforcement Learning [3.6159844753873087]
We study structured neural activity of a virtual robot performing legged locomotion.
We find that embodied agents trained to walk exhibit smooth dynamics that avoid tangling -- or opposing neural trajectories in neighboring neural space.
arXiv Detail & Related papers (2023-05-18T16:52:27Z) - Interpretable statistical representations of neural population dynamics and geometry [4.459704414303749]
We introduce a representation learning method, MARBLE, that decomposes on-manifold dynamics into local flow fields and maps them into a common latent space.
In simulated non-linear dynamical systems, recurrent neural networks, and experimental single-neuron recordings from primates and rodents, we discover emergent low-dimensional latent representations.
These representations are consistent across neural networks and animals, enabling the robust comparison of cognitive computations.
arXiv Detail & Related papers (2023-04-06T21:11:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking Neural Networks for Frame-based and Event-based Single Object
Localization [26.51843464087218]
Spiking neural networks have shown much promise as an energy-efficient alternative to artificial neural networks.
We propose a spiking neural network approach for single object localization trained using surrogate gradient descent.
We compare our method with similar artificial neural networks and show that our model has competitive/better performance in accuracy, against various corruptions, and has lower energy consumption.
arXiv Detail & Related papers (2022-06-13T22:22:32Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
We introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based architecture that explicitly models responses of individual neurons.
We show that our model achieves state-of-the-art performance on ensemble level in estimating neural activities across four neural datasets.
arXiv Detail & Related papers (2022-06-09T18:54:23Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
We evolved weights in a biologically plausible recurrent neural network (RNN) using an evolutionary algorithm to replicate the behavior and neural activity observed in rats.
Our method demonstrates how the dynamic activity in evolved RNNs can capture interesting and complex cognitive behavior.
arXiv Detail & Related papers (2021-02-25T02:13:52Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.