Rapid and Precise Topological Comparison with Merge Tree Neural Networks
- URL: http://arxiv.org/abs/2404.05879v3
- Date: Fri, 04 Oct 2024 13:54:25 GMT
- Title: Rapid and Precise Topological Comparison with Merge Tree Neural Networks
- Authors: Yu Qin, Brittany Terese Fasy, Carola Wenk, Brian Summa,
- Abstract summary: We introduce the Merge Tree Neural Network (MTNN), a learned neural network model designed for merge tree comparison.
We first demonstrate how to train graph neural networks, which emerged as effective encoders for graphs, in order to produce embeddings of merge trees in vector spaces.
We then formulate the novel MTNN model that further improves the similarity comparisons by integrating the tree and node embeddings with a new topological attention mechanism.
- Score: 7.443474354626664
- License:
- Abstract: Merge trees are a valuable tool in the scientific visualization of scalar fields; however, current methods for merge tree comparisons are computationally expensive, primarily due to the exhaustive matching between tree nodes. To address this challenge, we introduce the Merge Tree Neural Network (MTNN), a learned neural network model designed for merge tree comparison. The MTNN enables rapid and high-quality similarity computation. We first demonstrate how to train graph neural networks, which emerged as effective encoders for graphs, in order to produce embeddings of merge trees in vector spaces for efficient similarity comparison. Next, we formulate the novel MTNN model that further improves the similarity comparisons by integrating the tree and node embeddings with a new topological attention mechanism. We demonstrate the effectiveness of our model on real-world data in different domains and examine our model's generalizability across various datasets. Our experimental analysis demonstrates our approach's superiority in accuracy and efficiency. In particular, we speed up the prior state-of-the-art by more than $100\times$ on the benchmark datasets while maintaining an error rate below $0.1\%$.
Related papers
- TREE-G: Decision Trees Contesting Graph Neural Networks [33.364191419692105]
TREE-G modifies standard decision trees, by introducing a novel split function that is specialized for graph data.
We show that TREE-G consistently outperforms other tree-based models and often outperforms other graph-learning algorithms such as Graph Neural Networks (GNNs) and Graph Kernels.
arXiv Detail & Related papers (2022-07-06T15:53:17Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - A Simple yet Effective Method for Graph Classification [7.397201068210497]
We investigate the feasibility of improving graph classification performance while simplifying the learning process.
Inspired by structural entropy on graphs, we transform the data sample from graphs to coding trees.
We present a tree kernel and a convolutional network to implement our scheme for graph classification.
arXiv Detail & Related papers (2022-06-06T07:24:44Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed
Graph Neural Networks [68.61934077627085]
We introduce GNNRank, a modeling framework compatible with any GNN capable of learning digraph embeddings.
We show that our methods attain competitive and often superior performance compared with existing approaches.
arXiv Detail & Related papers (2022-02-01T04:19:50Z) - Structural Optimization Makes Graph Classification Simpler and Better [5.770986723520119]
We investigate the feasibility of improving graph classification performance while simplifying the model learning process.
Inspired by progress in structural information assessment, we optimize the given data sample from graphs to encoding trees.
We present an implementation of the scheme in a tree kernel and a convolutional network to perform graph classification.
arXiv Detail & Related papers (2021-09-05T08:54:38Z) - To Boost or not to Boost: On the Limits of Boosted Neural Networks [67.67776094785363]
Boosting is a method for learning an ensemble of classifiers.
While boosting has been shown to be very effective for decision trees, its impact on neural networks has not been extensively studied.
We find that a single neural network usually generalizes better than a boosted ensemble of smaller neural networks with the same total number of parameters.
arXiv Detail & Related papers (2021-07-28T19:10:03Z) - Neural Trees for Learning on Graphs [19.05038106825347]
Graph Neural Networks (GNNs) have emerged as a flexible and powerful approach for learning over graphs.
We propose a new GNN architecture -- the Neural Tree.
We show that the neural tree architecture can approximate any smooth probability distribution function over an undirected graph.
arXiv Detail & Related papers (2021-05-15T17:08:20Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
We propose an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data.
We then introduce DTAE, a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space.
arXiv Detail & Related papers (2021-02-11T08:48:48Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - The Tree Ensemble Layer: Differentiability meets Conditional Computation [8.40843862024745]
We introduce a new layer for neural networks composed of an ensemble of differentiable decision trees (a.k.a. soft trees)
Differentiable trees demonstrate promising results in the literature, but are typically slow in training and inference as they do not support conditional computation.
We develop specialized forward and backward propagation algorithms that exploit sparsity.
arXiv Detail & Related papers (2020-02-18T18:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.