[Call for Papers] The 2nd BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus
- URL: http://arxiv.org/abs/2404.06214v2
- Date: Sat, 27 Jul 2024 18:50:28 GMT
- Title: [Call for Papers] The 2nd BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus
- Authors: Leshem Choshen, Ryan Cotterell, Michael Y. Hu, Tal Linzen, Aaron Mueller, Candace Ross, Alex Warstadt, Ethan Wilcox, Adina Williams, Chengxu Zhuang,
- Abstract summary: This CfP provides rules for the BabyLM Challenge 2024-2025.
The overarching goals of the challenge remain the same.
We replace the loose track with a paper track.
We relax the rules around pretraining data.
We introduce a multimodal vision-and-language track.
- Score: 81.34965784440176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: After last year's successful BabyLM Challenge, the competition will be hosted again in 2024/2025. The overarching goals of the challenge remain the same; however, some of the competition rules will be different. The big changes for this year's competition are as follows: First, we replace the loose track with a paper track, which allows (for example) non-model-based submissions, novel cognitively-inspired benchmarks, or analysis techniques. Second, we are relaxing the rules around pretraining data, and will now allow participants to construct their own datasets provided they stay within the 100M-word or 10M-word budget. Third, we introduce a multimodal vision-and-language track, and will release a corpus of 50% text-only and 50% image-text multimodal data as a starting point for LM model training. The purpose of this CfP is to provide rules for this year's challenge, explain these rule changes and their rationale in greater detail, give a timeline of this year's competition, and provide answers to frequently asked questions from last year's challenge.
Related papers
- ICDAR 2023 Competition on Hierarchical Text Detection and Recognition [60.68100769639923]
The competition is aimed to promote research into deep learning models and systems that can jointly perform text detection and recognition.
We present details of the proposed competition organization, including tasks, datasets, evaluations, and schedule.
During the competition period (from January 2nd 2023 to April 1st 2023), at least 50 submissions from more than 20 teams were made in the 2 proposed tasks.
arXiv Detail & Related papers (2023-05-16T18:56:12Z) - MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised
Learning [90.17500229142755]
The first Multimodal Emotion Recognition Challenge (MER 2023) was successfully held at ACM Multimedia.
This paper introduces the motivation behind this challenge, describe the benchmark dataset, and provide some statistics about participants.
We believe this high-quality dataset can become a new benchmark in multimodal emotion recognition, especially for the Chinese research community.
arXiv Detail & Related papers (2023-04-18T13:23:42Z) - Call for Papers -- The BabyLM Challenge: Sample-efficient pretraining on
a developmentally plausible corpus [32.51325830633226]
We present the call for papers for the BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus.
This shared task is intended for participants with an interest in small scale language modeling, human language acquisition, low-resource NLP, and cognitive modeling.
arXiv Detail & Related papers (2023-01-27T15:52:50Z) - 1st Place Solution to ECCV 2022 Challenge on Out of Vocabulary Scene
Text Understanding: Cropped Word Recognition [35.2137931915091]
This report presents our winner solution to ECCV 2022 challenge on Out-of-Vocabulary Scene Text Understanding (OOV-ST)
Our solution achieves an overall word accuracy of 69.73% when considering both in-vocabulary and out-of-vocabulary words.
arXiv Detail & Related papers (2022-08-04T16:20:58Z) - ABAW: Learning from Synthetic Data & Multi-Task Learning Challenges [4.273075747204267]
This paper describes the fourth Affective Behavior Analysis in-the-wild (ABAW) Competition, held in conjunction with European Conference on Computer Vision (ECCV), 2022.
arXiv Detail & Related papers (2022-07-03T22:43:33Z) - Team Cogitat at NeurIPS 2021: Benchmarks for EEG Transfer Learning
Competition [55.34407717373643]
Building subject-independent deep learning models for EEG decoding faces the challenge of strong co-shift.
Our approach is to explicitly align feature distributions at various layers of the deep learning model.
The methodology won first place in the 2021 Benchmarks in EEG Transfer Learning competition, hosted at the NeurIPS conference.
arXiv Detail & Related papers (2022-02-01T11:11:08Z) - NTIRE 2021 Multi-modal Aerial View Object Classification Challenge [88.89190054948325]
We introduce the first Challenge on Multi-modal Aerial View Object Classification (MAVOC) in conjunction with the NTIRE 2021 workshop at CVPR.
This challenge is composed of two different tracks using EO and SAR imagery.
We discuss the top methods submitted for this competition and evaluate their results on our blind test set.
arXiv Detail & Related papers (2021-07-02T16:55:08Z) - Analysing Affective Behavior in the First ABAW 2020 Competition [49.90617840789334]
The Affective Behavior Analysis in-the-wild (ABAW) 2020 Competition is the first Competition aiming at automatic analysis of the three main behavior tasks.
We describe this Competition, to be held in conjunction with the IEEE Conference on Face and Gesture Recognition, May 2020, in Buenos Aires, Argentina.
We outline the evaluation metrics, present both the baseline system and the top-3 performing teams' methodologies per Challenge and finally present their obtained results.
arXiv Detail & Related papers (2020-01-30T15:41:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.