Label-Efficient 3D Object Detection For Road-Side Units
- URL: http://arxiv.org/abs/2404.06256v1
- Date: Tue, 9 Apr 2024 12:29:16 GMT
- Title: Label-Efficient 3D Object Detection For Road-Side Units
- Authors: Minh-Quan Dao, Holger Caesar, Julie Stephany Berrio, Mao Shan, Stewart Worrall, Vincent Frémont, Ezio Malis,
- Abstract summary: Collaborative perception can enhance the perception of autonomous vehicles via deep information fusion with intelligent roadside units (RSU)
The data-hungry nature of these methods creates a major hurdle for their real-world deployment, particularly due to the need for annotated RSU data.
We devise a label-efficient object detection method for RSU based on unsupervised object discovery.
- Score: 10.663986706501188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Occlusion presents a significant challenge for safety-critical applications such as autonomous driving. Collaborative perception has recently attracted a large research interest thanks to the ability to enhance the perception of autonomous vehicles via deep information fusion with intelligent roadside units (RSU), thus minimizing the impact of occlusion. While significant advancement has been made, the data-hungry nature of these methods creates a major hurdle for their real-world deployment, particularly due to the need for annotated RSU data. Manually annotating the vast amount of RSU data required for training is prohibitively expensive, given the sheer number of intersections and the effort involved in annotating point clouds. We address this challenge by devising a label-efficient object detection method for RSU based on unsupervised object discovery. Our paper introduces two new modules: one for object discovery based on a spatial-temporal aggregation of point clouds, and another for refinement. Furthermore, we demonstrate that fine-tuning on a small portion of annotated data allows our object discovery models to narrow the performance gap with, or even surpass, fully supervised models. Extensive experiments are carried out in simulated and real-world datasets to evaluate our method.
Related papers
- Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer [12.042768320132694]
This paper presents a review of 27 cutting-edge developments in semi-supervised learning for object detection.
It covers data augmentation techniques, pseudo-labeling strategies, consistency regularization, and adversarial training methods.
We aim to ignite further research interest in overcoming existing challenges and exploring new directions in semi-supervised learning for object detection.
arXiv Detail & Related papers (2024-07-11T12:58:13Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - 3D Object Detection and High-Resolution Traffic Parameters Extraction
Using Low-Resolution LiDAR Data [14.142956899468922]
This study proposes an innovative framework that alleviates the need for multiple LiDAR systems and simplifies the laborious 3D annotation process.
Using the 2D bounding box detection and extracted height information, this study is able to generate 3D bounding boxes automatically without human intervention.
arXiv Detail & Related papers (2024-01-13T01:22:20Z) - Refining the ONCE Benchmark with Hyperparameter Tuning [45.55545585587993]
This work focuses on the evaluation of semi-supervised learning approaches for point cloud data.
Data annotation is of paramount importance in the context of LiDAR applications.
We show that improvements from previous semi-supervised methods may not be as profound as previously thought.
arXiv Detail & Related papers (2023-11-10T13:39:07Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
We show that reconstructing features from models trained in a self-supervised manner is a sufficient training signal for object-centric representations to arise in a fully unsupervised way.
Our approach, DINOSAUR, significantly out-performs existing object-centric learning models on simulated data.
arXiv Detail & Related papers (2022-09-29T15:24:47Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
We investigate the impact of fused LiDAR point clouds compared to single LiDAR point clouds.
The evaluation of the extracted trajectories shows that a fused infrastructure approach significantly increases the tracking results and reaches accuracies within a few centimeters.
arXiv Detail & Related papers (2020-06-22T10:57:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.