CausalBench: A Comprehensive Benchmark for Causal Learning Capability of Large Language Models
- URL: http://arxiv.org/abs/2404.06349v1
- Date: Tue, 9 Apr 2024 14:40:08 GMT
- Title: CausalBench: A Comprehensive Benchmark for Causal Learning Capability of Large Language Models
- Authors: Yu Zhou, Xingyu Wu, Beicheng Huang, Jibin Wu, Liang Feng, Kay Chen Tan,
- Abstract summary: Causality reveals fundamental principles behind data distributions in real-world scenarios.
Large language models (LLMs) can understand causality directly impacts their efficacy across explaining outputs, adapting to new evidence, and generating counterfactuals.
This paper proposes a comprehensive benchmark, namely CausalBench, to evaluate the causality understanding capabilities of LLMs.
- Score: 27.362012903540492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causality reveals fundamental principles behind data distributions in real-world scenarios, and the capability of large language models (LLMs) to understand causality directly impacts their efficacy across explaining outputs, adapting to new evidence, and generating counterfactuals. With the proliferation of LLMs, the evaluation of this capacity is increasingly garnering attention. However, the absence of a comprehensive benchmark has rendered existing evaluation studies being straightforward, undiversified, and homogeneous. To address these challenges, this paper proposes a comprehensive benchmark, namely CausalBench, to evaluate the causality understanding capabilities of LLMs. Originating from the causal research community, CausalBench encompasses three causal learning-related tasks, which facilitate a convenient comparison of LLMs' performance with classic causal learning algorithms. Meanwhile, causal networks of varying scales and densities are integrated in CausalBench, to explore the upper limits of LLMs' capabilities across task scenarios of varying difficulty. Notably, background knowledge and structured data are also incorporated into CausalBench to thoroughly unlock the underlying potential of LLMs for long-text comprehension and prior information utilization. Based on CausalBench, this paper evaluates nineteen leading LLMs and unveils insightful conclusions in diverse aspects. Firstly, we present the strengths and weaknesses of LLMs and quantitatively explore the upper limits of their capabilities across various scenarios. Meanwhile, we further discern the adaptability and abilities of LLMs to specific structural networks and complex chain of thought structures. Moreover, this paper quantitatively presents the differences across diverse information sources and uncovers the gap between LLMs' capabilities in causal understanding within textual contexts and numerical domains.
Related papers
- LLM Cannot Discover Causality, and Should Be Restricted to Non-Decisional Support in Causal Discovery [30.24849564413826]
We demonstrate that LLMs' autoregressive, correlation-driven modeling inherently lacks the theoretical grounding for causal reasoning.<n>We show that deliberate prompt engineering could overstate their performance, helping to explain the consistently favorable results reported in much of the current literature.<n>We conclude with a call for the community to shift focus from naively applying LLMs to developing specialized models and training method that respect the core principles of causal discovery.
arXiv Detail & Related papers (2025-06-01T05:38:56Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
This study explores the factors influencing the performance of Large Language Models (LLMs) in causal discovery tasks.
A higher frequency of causal mentions correlates with better model performance, suggesting that extensive exposure to causal information during training enhances the models' causal discovery capabilities.
arXiv Detail & Related papers (2024-07-29T01:45:05Z) - How Likely Do LLMs with CoT Mimic Human Reasoning? [31.86489714330338]
Chain-of-thought (CoT) emerges as a promising technique to elicit reasoning capabilities from Large Language Models (LLMs)
In this paper, we diagnose the underlying mechanism by comparing the reasoning process of LLMs with humans.
Our empirical study reveals that LLMs often deviate from a causal chain, resulting in spurious correlations and potential consistency errors.
arXiv Detail & Related papers (2024-02-25T10:13:04Z) - Causal Graph Discovery with Retrieval-Augmented Generation based Large Language Models [23.438388321411693]
Causal graph recovery is traditionally done using statistical estimation-based methods or based on individual's knowledge about variables of interests.
We propose a novel method that leverages large language models (LLMs) to deduce causal relationships in general causal graph recovery tasks.
arXiv Detail & Related papers (2024-02-23T13:02:10Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
Large language models (LLMs) demonstrate strong reasoning abilities when prompted to generate chain-of-thought explanations alongside answers.
We propose a novel discriminative and generative CoT evaluation paradigm to assess LLMs' knowledge of reasoning and the accuracy of the generated CoT.
arXiv Detail & Related papers (2024-02-17T05:22:56Z) - Is Knowledge All Large Language Models Needed for Causal Reasoning? [11.476877330365664]
This paper explores the causal reasoning of large language models (LLMs) to enhance their interpretability and reliability in advancing artificial intelligence.
We propose a novel causal attribution model that utilizes do-operators" for constructing counterfactual scenarios.
arXiv Detail & Related papers (2023-12-30T04:51:46Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - From Query Tools to Causal Architects: Harnessing Large Language Models
for Advanced Causal Discovery from Data [19.264745484010106]
Large Language Models (LLMs) exhibit exceptional abilities for causal analysis between concepts in numerous societally impactful domains.
Recent research on LLM performance in various causal discovery and inference tasks has given rise to a new ladder in the classical three-stage framework of causality.
We propose a novel framework that combines knowledge-based LLM causal analysis with data-driven causal structure learning.
arXiv Detail & Related papers (2023-06-29T12:48:00Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
Large language models (LLMs) can generate causal arguments with high probability.
LLMs may be used by human domain experts to save effort in setting up a causal analysis.
arXiv Detail & Related papers (2023-04-28T19:00:43Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
This paper proposes a novel framework named textbfSearch-in-the-Chain (SearChain) for the interaction between Information Retrieval (IR) and Large Language Model (LLM)
Experiments show that SearChain outperforms state-of-the-art baselines on complex knowledge-intensive tasks.
arXiv Detail & Related papers (2023-04-28T10:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.