Superdense Coding and Stabiliser Codes with Ising-coupled Entanglement
- URL: http://arxiv.org/abs/2404.06454v1
- Date: Tue, 9 Apr 2024 16:54:34 GMT
- Title: Superdense Coding and Stabiliser Codes with Ising-coupled Entanglement
- Authors: Abel Jansma,
- Abstract summary: A new class of quantum states is introduced by demanding that the computational measurement statistics approach the Boltzmann distribution of higher-order strongly coupled Ising models.
The states, referred to as $n$-coupled states, are superpositions of even or odd parity $n$-qubit states, generalize Bell states, and form an orthonormal basis for the $n$-qubit Hilbert space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new class of quantum states is introduced by demanding that the computational measurement statistics approach the Boltzmann distribution of higher-order strongly coupled Ising models. The states, referred to as $n$-coupled states, are superpositions of even or odd parity $n$-qubit states, generalize Bell states, and form an orthonormal basis for the $n$-qubit Hilbert space. For any $n$, the states are maximally connected and locally maximally entangled. It is proven that the $n$-qubit W and GHZ multipartite entanglement classes have vanishing hyperdeterminant for all $n\geq 3$ and $n\geq 4$, respectively, and that the $n$-coupled states fall in the latter. Still, multiple novel protocols for multi-party secure dense coding and stabiliser code construction are presented, which rely on the structure of $n$-coupled states as well as symmetry-breaking phase perturbations.
Related papers
- Entanglement-assisted Quantum Error Correcting Code Saturating The Classical Singleton Bound [44.154181086513574]
We introduce a construction for entanglement-assisted quantum error-correcting codes (EAQECCs) that saturates the classical Singleton bound with less shared entanglement than any known method for code rates below $ frackn = frac13 $.
We demonstrate that any classical $[n,k,d]_q$ code can be transformed into an EAQECC with parameters $[n,k,d;2k]]_q$ using $2k$ pre-shared maximally entangled pairs.
arXiv Detail & Related papers (2024-10-05T11:56:15Z) - Scalable High-Dimensional Multipartite Entanglement with Trapped Ions [0.0]
We generalize the celebrated one-axis twisting (OAT) Hamiltonian for $N$ qubits to qudits.
We find that starting from a product state of an arbitrary number of atoms $N$, dynamics under BOAT leads to the formation of GHZ states for qutrits and ququarts.
Our results open a path for the scalable generation and certification of high-dimensional multipartite entanglement on current atom-based quantum hardware.
arXiv Detail & Related papers (2024-07-29T06:54:50Z) - Far from Perfect: Quantum Error Correction with (Hyperinvariant) Evenbly Codes [38.729065908701585]
We introduce a new class of qubit codes that we call Evenbly codes.
Our work indicates that Evenbly codes may show promise for practical quantum computing applications.
arXiv Detail & Related papers (2024-07-16T17:18:13Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Mixed-state quantum anomaly and multipartite entanglement [8.070164241593814]
We show a surprising connection between mixed state entanglement and 't Hooft anomaly.
We generate examples of mixed states with nontrivial long-ranged multipartite entanglement.
We also briefly discuss mixed anomaly involving both strong and weak symmetries.
arXiv Detail & Related papers (2024-01-30T19:00:02Z) - Entanglement hierarchies in multipartite scenarios [2.150800093140658]
We present a whole set of hierarchical quantifications as a method of characterizing quantum states.
We show that $k$-GM concurrence can unambiguously classify entangled states into $(n-1)$ distinct classes.
In particular, $alpha$-$-GM concurrence $(0alpha1)$ determines that the GHZ state and the $W$ state belong to the same hierarchy.
arXiv Detail & Related papers (2024-01-02T04:00:57Z) - Pseudorandom and Pseudoentangled States from Subset States [49.74460522523316]
A subset state with respect to $S$, a subset of the computational basis, is [ frac1sqrt|S|sum_iin S |irangle.
We show that for any fixed subset size $|S|=s$ such that $s = 2n/omega(mathrmpoly(n))$ and $s=omega(mathrmpoly(n))$, a random subset state is information-theoretically indistinguishable from a Haar random state even provided
arXiv Detail & Related papers (2023-12-23T15:52:46Z) - Entanglement and Bell inequalities violation in $H\to ZZ$ with anomalous coupling [44.99833362998488]
We discuss entanglement and violation of Bell-type inequalities for a system of two $Z$ bosons produced in Higgs decays.
We find that a $ZZ$ state is entangled and violates the inequality for all values of the pair (anomalous) coupling constant.
arXiv Detail & Related papers (2023-07-25T13:44:31Z) - Constructions of $k$-uniform states in heterogeneous systems [65.63939256159891]
We present two general methods to construct $k$-uniform states in the heterogeneous systems for general $k$.
We can produce many new $k$-uniform states such that the local dimension of each subsystem can be a prime power.
arXiv Detail & Related papers (2023-05-22T06:58:16Z) - Localization measures of parity adapted U($D$)-spin coherent states
applied to the phase space analysis of the $D$-level Lipkin-Meshkov-Glick
model [0.0]
We study phase-space properties of critical, parity symmetric, $N$-quDit systems undergoing a quantum phase transition.
For finite $N$, parity can be restored by projecting DSCS onto $2D-1$ different parity invariant subspaces.
Pres of the QPT are then visualized for finite $N$ by plotting the Husimi function of these parity projected DSCS in phase space.
arXiv Detail & Related papers (2023-02-13T10:51:19Z) - Verification of phased Dicke states [2.4173125243170377]
Dicke states are examples of quantum states with genuine multipartite entanglement.
Phased Dicke states are a generalization of Dicke states and include antisymmetric basis states.
We propose practical and efficient protocols for verifying phased Dicke states.
arXiv Detail & Related papers (2020-04-15T04:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.