Neural Optimizer Equation, Decay Function, and Learning Rate Schedule Joint Evolution
- URL: http://arxiv.org/abs/2404.06679v1
- Date: Wed, 10 Apr 2024 02:00:24 GMT
- Title: Neural Optimizer Equation, Decay Function, and Learning Rate Schedule Joint Evolution
- Authors: Brandon Morgan, Dean Hougen,
- Abstract summary: A major contributor to the quality of a deep learning model is the selection of the Conv.
We propose a new dual-joint search space in realm neural search (NOS), along with an integrity check, to automate the process of finding deep learnings.
We find multiples, learning rate schedules, and Adam variants that outperformed Adam, as well as other standard deep learnings, across the image classification tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major contributor to the quality of a deep learning model is the selection of the optimizer. We propose a new dual-joint search space in the realm of neural optimizer search (NOS), along with an integrity check, to automate the process of finding deep learning optimizers. Our dual-joint search space simultaneously allows for the optimization of not only the update equation, but also internal decay functions and learning rate schedules for optimizers. We search the space using our proposed mutation-only, particle-based genetic algorithm able to be massively parallelized for our domain-specific problem. We evaluate our candidate optimizers on the CIFAR-10 dataset using a small ConvNet. To assess generalization, the final optimizers were then transferred to large-scale image classification on CIFAR- 100 and TinyImageNet, while also being fine-tuned on Flowers102, Cars196, and Caltech101 using EfficientNetV2Small. We found multiple optimizers, learning rate schedules, and Adam variants that outperformed Adam, as well as other standard deep learning optimizers, across the image classification tasks.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z) - VeLO: Training Versatile Learned Optimizers by Scaling Up [67.90237498659397]
We leverage the same scaling approach behind the success of deep learning to learn versatiles.
We train an ingest for deep learning which is itself a small neural network that ingests and outputs parameter updates.
We open source our learned, meta-training code, the associated train test data, and an extensive benchmark suite with baselines at velo-code.io.
arXiv Detail & Related papers (2022-11-17T18:39:07Z) - Learning to Optimize Quasi-Newton Methods [22.504971951262004]
This paper introduces a novel machine learning called LODO, which tries to online meta-learn the best preconditioner during optimization.
Unlike other L2O methods, LODO does not require any meta-training on a training task distribution.
We show that our gradient approximates the inverse Hessian in noisy loss landscapes and is capable of representing a wide range of inverse Hessians.
arXiv Detail & Related papers (2022-10-11T03:47:14Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Woodpecker-DL: Accelerating Deep Neural Networks via Hardware-Aware
Multifaceted Optimizations [15.659251804042748]
Woodpecker-DL (WPK) is a hardware-aware deep learning framework.
WPK uses graph optimization, automated searches, domain-specific language ( DSL) and system-level exploration to accelerate inference.
We show that on a maximum P100 GPU, we can achieve the speedup of 5.40 over cuDNN and 1.63 over TVM on individual operators, and run up to 1.18 times faster than TeslaRT for end-to-end model inference.
arXiv Detail & Related papers (2020-08-11T07:50:34Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.