An Animation-based Augmentation Approach for Action Recognition from Discontinuous Video
- URL: http://arxiv.org/abs/2404.06741v4
- Date: Fri, 11 Oct 2024 11:44:49 GMT
- Title: An Animation-based Augmentation Approach for Action Recognition from Discontinuous Video
- Authors: Xingyu Song, Zhan Li, Shi Chen, Xin-Qiang Cai, Kazuyuki Demachi,
- Abstract summary: Action recognition, an essential component of computer vision, plays a pivotal role in multiple applications.
CNNs suffer performance declines when trained with discontinuous video frames, which is a frequent scenario in real-world settings.
To overcome this issue, we introduce the 4A pipeline, which employs a series of sophisticated techniques.
- Score: 11.293897932762809
- License:
- Abstract: Action recognition, an essential component of computer vision, plays a pivotal role in multiple applications. Despite significant improvements brought by Convolutional Neural Networks (CNNs), these models suffer performance declines when trained with discontinuous video frames, which is a frequent scenario in real-world settings. This decline primarily results from the loss of temporal continuity, which is crucial for understanding the semantics of human actions. To overcome this issue, we introduce the 4A (Action Animation-based Augmentation Approach) pipeline, which employs a series of sophisticated techniques: starting with 2D human pose estimation from RGB videos, followed by Quaternion-based Graph Convolution Network for joint orientation and trajectory prediction, and Dynamic Skeletal Interpolation for creating smoother, diversified actions using game engine technology. This innovative approach generates realistic animations in varied game environments, viewed from multiple viewpoints. In this way, our method effectively bridges the domain gap between virtual and real-world data. In experimental evaluations, the 4A pipeline achieves comparable or even superior performance to traditional training approaches using real-world data, while requiring only 10% of the original data volume. Additionally, our approach demonstrates enhanced performance on In-the-wild videos, marking a significant advancement in the field of action recognition.
Related papers
- Video Action Recognition Collaborative Learning with Dynamics via
PSO-ConvNet Transformer [1.876462046907555]
We propose a novel PSO-ConvNet model for learning actions in videos.
Our experimental results on the UCF-101 dataset demonstrate substantial improvements of up to 9% in accuracy.
Overall, our dynamic PSO-ConvNet model provides a promising direction for improving Human Action Recognition.
arXiv Detail & Related papers (2023-02-17T23:39:34Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
We propose a novel Dyna-Depthformer framework, which predicts scene depth and 3D motion field jointly.
Our contributions are two-fold. First, we leverage multi-view correlation through a series of self- and cross-attention layers in order to obtain enhanced depth feature representation.
Second, we propose a warping-based Motion Network to estimate the motion field of dynamic objects without using semantic prior.
arXiv Detail & Related papers (2023-01-14T09:43:23Z) - Multi-dataset Training of Transformers for Robust Action Recognition [75.5695991766902]
We study the task of robust feature representations, aiming to generalize well on multiple datasets for action recognition.
Here, we propose a novel multi-dataset training paradigm, MultiTrain, with the design of two new loss terms, namely informative loss and projection loss.
We verify the effectiveness of our method on five challenging datasets, Kinetics-400, Kinetics-700, Moments-in-Time, Activitynet and Something-something-v2.
arXiv Detail & Related papers (2022-09-26T01:30:43Z) - Differentiable Frequency-based Disentanglement for Aerial Video Action
Recognition [56.91538445510214]
We present a learning algorithm for human activity recognition in videos.
Our approach is designed for UAV videos, which are mainly acquired from obliquely placed dynamic cameras.
We conduct extensive experiments on the UAV Human dataset and the NEC Drone dataset.
arXiv Detail & Related papers (2022-09-15T22:16:52Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
We propose a unified action recognition framework to investigate the dynamic nature of video content.
First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events.
Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer.
arXiv Detail & Related papers (2021-07-22T15:57:18Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z) - Complex Human Action Recognition in Live Videos Using Hybrid FR-DL
Method [1.027974860479791]
We address challenges of the preprocessing phase, by an automated selection of representative frames among the input sequences.
We propose a hybrid technique using background subtraction and HOG, followed by application of a deep neural network and skeletal modelling method.
We name our model as Feature Reduction & Deep Learning based action recognition method, or FR-DL in short.
arXiv Detail & Related papers (2020-07-06T15:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.