A Mathematical Theory for Learning Semantic Languages by Abstract Learners
- URL: http://arxiv.org/abs/2404.07009v3
- Date: Wed, 15 May 2024 18:05:54 GMT
- Title: A Mathematical Theory for Learning Semantic Languages by Abstract Learners
- Authors: Kuo-Yu Liao, Cheng-Shang Chang, Y. -W. Peter Hong,
- Abstract summary: We develop a mathematical theory to explain the emergence of learned skills, taking the learning process into account.
We demonstrate the emergence of learned skills when the ratio of the number of training texts to the number of skills exceeds a certain threshold.
We use site percolation analysis to derive the conditions for the existence of a giant component in the skill association graph.
- Score: 9.139188656944429
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Large Language Models (LLMs) have demonstrated the emergence of capabilities (learned skills) when the number of system parameters and the size of training data surpass certain thresholds. The exact mechanisms behind such phenomena are not fully understood and remain a topic of active research. Inspired by the skill-text bipartite graph model proposed by Arora and Goyal for modeling semantic languages, we develop a mathematical theory to explain the emergence of learned skills, taking the learning (or training) process into account. Our approach models the learning process for skills in the skill-text bipartite graph as an iterative decoding process in Low-Density Parity Check (LDPC) codes and Irregular Repetition Slotted ALOHA (IRSA). Using density evolution analysis, we demonstrate the emergence of learned skills when the ratio of the number of training texts to the number of skills exceeds a certain threshold. Our analysis also yields a scaling law for testing errors relative to this ratio. Upon completion of the training, the association of learned skills can also be acquired to form a skill association graph. We use site percolation analysis to derive the conditions for the existence of a giant component in the skill association graph. Our analysis can also be extended to the setting with a hierarchy of skills, where a fine-tuned model is built upon a foundation model. It is also applicable to the setting with multiple classes of skills and texts. As an important application, we propose a method for semantic compression and discuss its connections to semantic communication.
Related papers
- Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Generative retrieval-augmented ontologic graph and multi-agent
strategies for interpretive large language model-based materials design [0.0]
Transformer neural networks show promising capabilities, in particular for uses in materials analysis, design and manufacturing.
Here we explore the use of large language models (LLMs) as a tool that can support engineering analysis of materials.
arXiv Detail & Related papers (2023-10-30T20:31:50Z) - A Theory for Emergence of Complex Skills in Language Models [56.947273387302616]
A major driver of AI products today is the fact that new skills emerge in language models when their parameter set and training corpora are scaled up.
This paper takes a different approach, analysing emergence using the famous (and empirical) Scaling Laws of LLMs and a simple statistical framework.
arXiv Detail & Related papers (2023-07-29T09:22:54Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
This paper aims to improve the state of the art of automatic construction and completion of knowledge graphs from text.
In this context, one emerging paradigm is in-context learning where a language model is used as it is with a prompt.
arXiv Detail & Related papers (2023-05-15T17:10:19Z) - A Cohesive Distillation Architecture for Neural Language Models [0.0]
A recent trend in Natural Language Processing is the exponential growth in Language Model (LM) size.
This study investigates methods for Knowledge Distillation (KD) to provide efficient alternatives to large-scale models.
arXiv Detail & Related papers (2023-01-12T08:01:53Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for
Natural Language Understanding [19.478288026844893]
Knowledge-Enhanced Pre-trained Language Models (KEPLMs) are pre-trained models with relation triples injecting from knowledge graphs to improve language understanding abilities.
Previous studies integrate models with knowledge encoders for representing knowledge retrieved from knowledge graphs.
We propose a novel KEPLM named DKPLM that Decomposes Knowledge injection process of the Pre-trained Language Models in pre-training, fine-tuning and inference stages.
arXiv Detail & Related papers (2021-12-02T08:19:42Z) - KELM: Knowledge Enhanced Pre-Trained Language Representations with
Message Passing on Hierarchical Relational Graphs [26.557447199727758]
We propose a novel knowledge-aware language model framework based on fine-tuning process.
Our model can efficiently incorporate world knowledge from KGs into existing language models such as BERT.
arXiv Detail & Related papers (2021-09-09T12:39:17Z) - CoLAKE: Contextualized Language and Knowledge Embedding [81.90416952762803]
We propose the Contextualized Language and Knowledge Embedding (CoLAKE)
CoLAKE jointly learns contextualized representation for both language and knowledge with the extended objective.
We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks.
arXiv Detail & Related papers (2020-10-01T11:39:32Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.