Quantum Isotropic Universe in RQM Analogy: the Cosmological Horizon
- URL: http://arxiv.org/abs/2404.07056v3
- Date: Mon, 10 Jun 2024 15:52:20 GMT
- Title: Quantum Isotropic Universe in RQM Analogy: the Cosmological Horizon
- Authors: Gabriele Barca, Luisa Boglioni, Giovanni Montani,
- Abstract summary: We investigate the quantum dynamics of the isotropic Universe in the presence of a free massless scalar field.
We show how the introduction of a "turning point" in the Universe evolution allows to overcome an intrinsic ambiguity in representing the expanding and collapsing Universe.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the quantum dynamics of the isotropic Universe in the presence of a free massless scalar field, playing the role of a physical clock. The Hilbert space is constructed via a direct analogy between the Wheeler-DeWitt equation in the minisuperspace and a relativistic scalar one in physical space. In particular, we show how the introduction of a "turning point" in the Universe evolution allows to overcome an intrinsic ambiguity in representing the expanding and collapsing Universe. In this way, the positive and negative frequencies are simply identified with time reversed states. The main subject of the present analysis is the construction of a horizon operator, whose quantum behavior is investigated when Polymer Quantum Mechanics is implemented to describe the asymptotic evolution near the initial singularity. The reason of this choice is motivated by the intrinsic spreading of localized wavepackets when the polymer dispersion relation governs the quantum dynamics. The evidence that the mean value of the quantum horizon operator follows its semiclassical behavior (corrected for polymerization) is a clear indication that a concept of causality can be restored also in the quantum cosmological picture.
Related papers
- Quantum Mechanics in Curved Space(time) with a Noncommutative Geometric Perspective [0.0]
We take seriously the noncommutative symplectic geometry corresponding to the quantum observable algebra.
The work points to a very different approach to quantum gravity.
arXiv Detail & Related papers (2024-06-20T10:44:06Z) - Quantum fluctuation theorem in a curved spacetime [0.0]
We report a fully general relativistic detailed quantum fluctuation theorem based on the two point measurement scheme.
We demonstrate how the spacetime curvature can produce entropy in a localized quantum system moving in a general spacetime.
arXiv Detail & Related papers (2024-05-06T23:16:50Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Completing the quantum ontology with the electromagnetic zero-point
field [0.0]
This text begins with a series of critical considerations on the initial interpretation of quantum phenomena observed in atomic systems.
Arguments are given in favour of the random zero-point radiation field (ZPF) as the element needed to complete the quantum process.
The permanent presence of the field drastically affects the dynamics of the particle, which eventually falls under the control of the field.
arXiv Detail & Related papers (2022-07-13T23:11:48Z) - Wave Functional of the Universe and Time [62.997667081978825]
A version of the quantum theory of gravity based on the concept of the wave functional of the universe is proposed.
The history of the evolution of the universe is described in terms of coordinate time together with arbitrary lapse and shift functions.
arXiv Detail & Related papers (2021-10-18T09:41:59Z) - Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum
Dynamics of Cosmological Perturbations [0.0]
entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems.
We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements.
We show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced.
arXiv Detail & Related papers (2021-10-06T13:43:00Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Singularity resolution depends on the clock [0.0]
We study the quantum cosmology of a flat Friedmann-Lemaitre-Robertson-Walker universe filled with a (free) massless scalar field and a perfect fluid that represents radiation or a cosmological constant whose value is not fixed by the action, as in unimodular gravity.
arXiv Detail & Related papers (2020-05-11T18:06:59Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.