Generalization Gap in Data Augmentation: Insights from Illumination
- URL: http://arxiv.org/abs/2404.07514v3
- Date: Wed, 21 Aug 2024 02:50:28 GMT
- Title: Generalization Gap in Data Augmentation: Insights from Illumination
- Authors: Jianqiang Xiao, Weiwen Guo, Junfeng Liu, Mengze Li,
- Abstract summary: We investigate the differences in generalization between models trained with augmented data and those trained under real-world illumination conditions.
Results indicate that after applying various data augmentation methods, model performance has significantly improved.
Yet, a noticeable generalization gap still exists after utilizing various data augmentation methods.
- Score: 3.470401787749558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of computer vision, data augmentation is widely used to enrich the feature complexity of training datasets with deep learning techniques. However, regarding the generalization capabilities of models, the difference in artificial features generated by data augmentation and natural visual features has not been fully revealed. This study introduces the concept of "visual representation variables" to define the possible visual variations in a task as a joint distribution of these variables. We focus on the visual representation variable "illumination", by simulating its distribution degradation and examining how data augmentation techniques enhance model performance on a classification task. Our goal is to investigate the differences in generalization between models trained with augmented data and those trained under real-world illumination conditions. Results indicate that after applying various data augmentation methods, model performance has significantly improved. Yet, a noticeable generalization gap still exists after utilizing various data augmentation methods, emphasizing the critical role of feature diversity in the training set for enhancing model generalization.
Related papers
- Feature Augmentation for Self-supervised Contrastive Learning: A Closer Look [28.350278251132078]
We propose a unified framework to conduct data augmentation in the feature space, known as feature augmentation.
This strategy is domain-agnostic, which augments similar features to the original ones and thus improves the data diversity.
arXiv Detail & Related papers (2024-10-16T09:25:11Z) - Data Augmentation via Latent Diffusion for Saliency Prediction [67.88936624546076]
Saliency prediction models are constrained by the limited diversity and quantity of labeled data.
We propose a novel data augmentation method for deep saliency prediction that edits natural images while preserving the complexity and variability of real-world scenes.
arXiv Detail & Related papers (2024-09-11T14:36:24Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Robust Computer Vision in an Ever-Changing World: A Survey of Techniques
for Tackling Distribution Shifts [20.17397328893533]
AI applications are becoming increasingly visible to the general public.
There is a notable gap between the theoretical assumptions researchers make about computer vision models and the reality those models face when deployed in the real world.
One of the critical reasons for this gap is a challenging problem known as distribution shift.
arXiv Detail & Related papers (2023-12-03T23:40:12Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
Long-tail models exhibit a strong demand for high-quality data.
Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance.
There is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation.
arXiv Detail & Related papers (2023-11-03T06:34:37Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
We show that our data augmentation strategy leads to promising performance on the Kinetics-100, UCF-101, and HMDB-51 datasets.
We also validate our data augmentation strategy in the fully supervised setting and demonstrate improved performance.
arXiv Detail & Related papers (2021-03-30T17:59:49Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.