AUG: A New Dataset and An Efficient Model for Aerial Image Urban Scene Graph Generation
- URL: http://arxiv.org/abs/2404.07788v1
- Date: Thu, 11 Apr 2024 14:29:30 GMT
- Title: AUG: A New Dataset and An Efficient Model for Aerial Image Urban Scene Graph Generation
- Authors: Yansheng Li, Kun Li, Yongjun Zhang, Linlin Wang, Dingwen Zhang,
- Abstract summary: This paper constructs and releases an aerial image urban scene graph generation (AUG) dataset.
Images from the AUG dataset are captured with the low-attitude overhead view.
To avoid the local context being overwhelmed in the complex aerial urban scene, this paper proposes one new locality-preserving graph convolutional network (LPG)
- Score: 40.149652254414185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene graph generation (SGG) aims to understand the visual objects and their semantic relationships from one given image. Until now, lots of SGG datasets with the eyelevel view are released but the SGG dataset with the overhead view is scarcely studied. By contrast to the object occlusion problem in the eyelevel view, which impedes the SGG, the overhead view provides a new perspective that helps to promote the SGG by providing a clear perception of the spatial relationships of objects in the ground scene. To fill in the gap of the overhead view dataset, this paper constructs and releases an aerial image urban scene graph generation (AUG) dataset. Images from the AUG dataset are captured with the low-attitude overhead view. In the AUG dataset, 25,594 objects, 16,970 relationships, and 27,175 attributes are manually annotated. To avoid the local context being overwhelmed in the complex aerial urban scene, this paper proposes one new locality-preserving graph convolutional network (LPG). Different from the traditional graph convolutional network, which has the natural advantage of capturing the global context for SGG, the convolutional layer in the LPG integrates the non-destructive initial features of the objects with dynamically updated neighborhood information to preserve the local context under the premise of mining the global context. To address the problem that there exists an extra-large number of potential object relationship pairs but only a small part of them is meaningful in AUG, we propose the adaptive bounding box scaling factor for potential relationship detection (ABS-PRD) to intelligently prune the meaningless relationship pairs. Extensive experiments on the AUG dataset show that our LPG can significantly outperform the state-of-the-art methods and the effectiveness of the proposed locality-preserving strategy.
Related papers
- Scene Graph Generation Strategy with Co-occurrence Knowledge and Learnable Term Frequency [3.351553095054309]
Scene graph generation (SGG) represents the relationships between objects in an image as a graph structure.
Previous studies have failed to reflect the co-occurrence of objects during SGG generation.
We propose CooK, which reflects the Co-occurrence Knowledge between objects, and the learnable term frequency-inverse document frequency.
arXiv Detail & Related papers (2024-05-21T09:56:48Z) - Representation Learning on Heterophilic Graph with Directional
Neighborhood Attention [8.493802098034255]
Graph Attention Network (GAT) is one of the most popular Graph Neural Network (GNN) architecture.
GAT lacks the ability to capture long-range and global graph information, leading to unsatisfactory performance on some datasets.
We propose Directional Graph Attention Network (DGAT) to combine the feature-based attention with the global directional information extracted from the graph topology.
arXiv Detail & Related papers (2024-03-03T10:59:16Z) - Semantic Scene Graph Generation Based on an Edge Dual Scene Graph and
Message Passing Neural Network [3.9280441311534653]
Scene graph generation (SGG) captures the relationships between objects in an image and creates a structured graph-based representation.
Existing SGG methods have a limited ability to accurately predict detailed relationships.
A new approach to the modeling multiobject relationships, called edge dual scene graph generation (EdgeSGG), is proposed herein.
arXiv Detail & Related papers (2023-11-02T12:36:52Z) - Towards Open-vocabulary Scene Graph Generation with Prompt-based
Finetuning [84.39787427288525]
Scene graph generation (SGG) is a fundamental task aimed at detecting visual relations between objects in an image.
We introduce open-vocabulary scene graph generation, a novel, realistic and challenging setting in which a model is trained on a set of base object classes.
Our method can support inference over completely unseen object classes, which existing methods are incapable of handling.
arXiv Detail & Related papers (2022-08-17T09:05:38Z) - HL-Net: Heterophily Learning Network for Scene Graph Generation [90.2766568914452]
We propose a novel Heterophily Learning Network (HL-Net) to explore the homophily and heterophily between objects/relationships in scene graphs.
HL-Net comprises the following 1) an adaptive reweighting transformer module, which adaptively integrates the information from different layers to exploit both the heterophily and homophily in objects.
We conducted extensive experiments on two public datasets: Visual Genome (VG) and Open Images (OI)
arXiv Detail & Related papers (2022-05-03T06:00:29Z) - Fine-Grained Scene Graph Generation with Data Transfer [127.17675443137064]
Scene graph generation (SGG) aims to extract (subject, predicate, object) triplets in images.
Recent works have made a steady progress on SGG, and provide useful tools for high-level vision and language understanding.
We propose a novel Internal and External Data Transfer (IETrans) method, which can be applied in a play-and-plug fashion and expanded to large SGG with 1,807 predicate classes.
arXiv Detail & Related papers (2022-03-22T12:26:56Z) - Relation Regularized Scene Graph Generation [206.76762860019065]
Scene graph generation (SGG) is built on top of detected objects to predict object pairwise visual relations.
We propose a relation regularized network (R2-Net) which can predict whether there is a relationship between two objects.
Our R2-Net can effectively refine object labels and generate scene graphs.
arXiv Detail & Related papers (2022-02-22T11:36:49Z) - Fully Convolutional Scene Graph Generation [30.194961716870186]
This paper presents a fully convolutional scene graph generation (FCSGG) model that detects objects and relations simultaneously.
FCSGG encodes objects as bounding box center points, and relationships as 2D vector fields which are named as Relation Affinity Fields (RAFs)
FCSGG achieves highly competitive results on recall and zero-shot recall with significantly reduced inference time.
arXiv Detail & Related papers (2021-03-30T05:25:38Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.