Overparameterized Multiple Linear Regression as Hyper-Curve Fitting
- URL: http://arxiv.org/abs/2404.07849v1
- Date: Thu, 11 Apr 2024 15:43:11 GMT
- Title: Overparameterized Multiple Linear Regression as Hyper-Curve Fitting
- Authors: E. Atza, N. Budko,
- Abstract summary: It is proven that a linear model will produce exact predictions even in the presence of nonlinear dependencies that violate the model assumptions.
The hyper-curve approach is especially suited for the regularization of problems with noise in predictor variables and can be used to remove noisy and "improper" predictors from the model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper shows that the application of the fixed-effect multiple linear regression model to an overparameterized dataset is equivalent to fitting the data with a hyper-curve parameterized by a single scalar parameter. This equivalence allows for a predictor-focused approach, where each predictor is described by a function of the chosen parameter. It is proven that a linear model will produce exact predictions even in the presence of nonlinear dependencies that violate the model assumptions. Parameterization in terms of the dependent variable and the monomial basis in the predictor function space are applied here to both synthetic and experimental data. The hyper-curve approach is especially suited for the regularization of problems with noise in predictor variables and can be used to remove noisy and "improper" predictors from the model.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Gradient-based bilevel optimization for multi-penalty Ridge regression
through matrix differential calculus [0.46040036610482665]
We introduce a gradient-based approach to the problem of linear regression with l2-regularization.
We show that our approach outperforms LASSO, Ridge, and Elastic Net regression.
The analytical of the gradient proves to be more efficient in terms of computational time compared to automatic differentiation.
arXiv Detail & Related papers (2023-11-23T20:03:51Z) - Adaptive debiased machine learning using data-driven model selection
techniques [0.5735035463793007]
Adaptive Debiased Machine Learning (ADML) is a nonbiased framework that combines data-driven model selection and debiased machine learning techniques.
ADML avoids the bias introduced by model misspecification and remains free from the restrictions of parametric and semi models.
We provide a broad class of ADML estimators for estimating the average treatment effect in adaptive partially linear regression models.
arXiv Detail & Related papers (2023-07-24T06:16:17Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Support estimation in high-dimensional heteroscedastic mean regression [2.28438857884398]
We consider a linear mean regression model with random design and potentially heteroscedastic, heavy-tailed errors.
We use a strictly convex, smooth variant of the Huber loss function with tuning parameter depending on the parameters of the problem.
For the resulting estimator we show sign-consistency and optimal rates of convergence in the $ell_infty$ norm.
arXiv Detail & Related papers (2020-11-03T09:46:31Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Assumption-lean inference for generalised linear model parameters [0.0]
We propose nonparametric definitions of main effect estimands and effect modification estimands.
These reduce to standard main effect and effect modification parameters in generalised linear models when these models are correctly specified.
We achieve an assumption-lean inference for these estimands.
arXiv Detail & Related papers (2020-06-15T13:49:48Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
We introduce an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems.
Our approach scales to high-dimensional data by leveraging the sparsity of the solutions.
arXiv Detail & Related papers (2020-02-20T18:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.