Parameter Hierarchical Optimization for Visible-Infrared Person Re-Identification
- URL: http://arxiv.org/abs/2404.07930v1
- Date: Thu, 11 Apr 2024 17:27:39 GMT
- Title: Parameter Hierarchical Optimization for Visible-Infrared Person Re-Identification
- Authors: Zeng YU, Yunxiao Shi,
- Abstract summary: Visible-infrared person re-identification (VI-reID) aims at matching cross-modality pedestrian images captured by disjoint visible or infrared cameras.
We propose a novel parameter optimizing paradigm, parameter hierarchical optimization (PHO) method, for the task of VI-ReID.
It allows part of parameters to be directly optimized without any training, which narrows the search space of parameters and makes the whole network more easier to be trained.
- Score: 0.6675805308519986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visible-infrared person re-identification (VI-reID) aims at matching cross-modality pedestrian images captured by disjoint visible or infrared cameras. Existing methods alleviate the cross-modality discrepancies via designing different kinds of network architectures. Different from available methods, in this paper, we propose a novel parameter optimizing paradigm, parameter hierarchical optimization (PHO) method, for the task of VI-ReID. It allows part of parameters to be directly optimized without any training, which narrows the search space of parameters and makes the whole network more easier to be trained. Specifically, we first divide the parameters into different types, and then introduce a self-adaptive alignment strategy (SAS) to automatically align the visible and infrared images through transformation. Considering that features in different dimension have varying importance, we develop an auto-weighted alignment learning (AAL) module that can automatically weight features according to their importance. Importantly, in the alignment process of SAS and AAL, all the parameters are immediately optimized with optimization principles rather than training the whole network, which yields a better parameter training manner. Furthermore, we establish the cross-modality consistent learning (CCL) loss to extract discriminative person representations with translation consistency. We provide both theoretical justification and empirical evidence that our proposed PHO method outperform existing VI-reID approaches.
Related papers
- ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.
Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Deep Implicit Optimization enables Robust Learnable Features for Deformable Image Registration [20.34181966545357]
Existing Deep Learning in Image Registration (DLIR) methods do not explicitly incorporate optimization as a layer in a deep network.
We show that our method bridges the gap between statistical learning and optimization by explicitly incorporating optimization as a layer in a deep network.
Our framework shows excellent performance on in-domain datasets, and is agnostic to domain shift.
arXiv Detail & Related papers (2024-06-11T15:28:48Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process.
In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture.
We demonstrate that network rankings can be easily changed by better training networks in benchmarks.
arXiv Detail & Related papers (2024-02-27T11:52:49Z) - Low-Rank Representations Meets Deep Unfolding: A Generalized and
Interpretable Network for Hyperspectral Anomaly Detection [41.50904949744355]
Current hyperspectral anomaly detection (HAD) benchmark datasets suffer from low resolution, simple background, and small size of the detection data.
These factors also limit the performance of the well-known low-rank representation (LRR) models in terms of robustness.
We build a new set of HAD benchmark datasets for improving the robustness of the HAD algorithm in complex scenarios, AIR-HAD for short.
arXiv Detail & Related papers (2024-02-23T14:15:58Z) - Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning [91.5113227694443]
We propose a novel visual.
sensuous-aware fine-Tuning (SPT) scheme.
SPT allocates trainable parameters to task-specific important positions.
Experiments on a wide range of downstream recognition tasks show that our SPT is complementary to the existing PEFT methods.
arXiv Detail & Related papers (2023-03-15T12:34:24Z) - Riggable 3D Face Reconstruction via In-Network Optimization [58.016067611038046]
This paper presents a method for riggable 3D face reconstruction from monocular images.
It jointly estimates a personalized face rig and per-image parameters including expressions, poses, and illuminations.
Experiments demonstrate that our method achieves SOTA reconstruction accuracy, reasonable robustness and generalization ability.
arXiv Detail & Related papers (2021-04-08T03:53:20Z) - Direct Evolutionary Optimization of Variational Autoencoders With Binary
Latents [0.0]
We show that it is possible to train Variational Autoencoders (VAEs) with discrete latents without sampling-based approximation and re parameterization.
In contrast to large supervised networks, the here investigated VAEs can, e.g., denoise a single image without previous training on clean data and/or training on large image datasets.
arXiv Detail & Related papers (2020-11-27T12:42:12Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.