FusionMamba: Efficient Image Fusion with State Space Model
- URL: http://arxiv.org/abs/2404.07932v2
- Date: Fri, 10 May 2024 20:32:15 GMT
- Title: FusionMamba: Efficient Image Fusion with State Space Model
- Authors: Siran Peng, Xiangyu Zhu, Haoyu Deng, Zhen Lei, Liang-Jian Deng,
- Abstract summary: Image fusion aims to generate a high-resolution multi/hyper-spectral image with limited spectral information and a low-resolution image with abundant spectral data.
Current deep learning (DL)-based methods for image fusion rely on CNNs or Transformers to extract features and merge different types of data.
We propose FusionMamba, an innovative method for efficient image fusion.
- Score: 35.57157248152558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image fusion aims to generate a high-resolution multi/hyper-spectral image by combining a high-resolution image with limited spectral information and a low-resolution image with abundant spectral data. Current deep learning (DL)-based methods for image fusion primarily rely on CNNs or Transformers to extract features and merge different types of data. While CNNs are efficient, their receptive fields are limited, restricting their capacity to capture global context. Conversely, Transformers excel at learning global information but are hindered by their quadratic complexity. Fortunately, recent advancements in the State Space Model (SSM), particularly Mamba, offer a promising solution to this issue by enabling global awareness with linear complexity. However, there have been few attempts to explore the potential of the SSM in information fusion, which is a crucial ability in domains like image fusion. Therefore, we propose FusionMamba, an innovative method for efficient image fusion. Our contributions mainly focus on two aspects. Firstly, recognizing that images from different sources possess distinct properties, we incorporate Mamba blocks into two U-shaped networks, presenting a novel architecture that extracts spatial and spectral features in an efficient, independent, and hierarchical manner. Secondly, to effectively combine spatial and spectral information, we extend the Mamba block to accommodate dual inputs. This expansion leads to the creation of a new module called the FusionMamba block, which outperforms existing fusion techniques such as concatenation and cross-attention. We conduct a series of experiments on five datasets related to three image fusion tasks. The quantitative and qualitative evaluation results demonstrate that our method achieves SOTA performance, underscoring the superiority of FusionMamba. The code is available at https://github.com/PSRben/FusionMamba.
Related papers
- Fusion from Decomposition: A Self-Supervised Approach for Image Fusion and Beyond [74.96466744512992]
The essence of image fusion is to integrate complementary information from source images.
DeFusion++ produces versatile fused representations that can enhance the quality of image fusion and the effectiveness of downstream high-level vision tasks.
arXiv Detail & Related papers (2024-10-16T06:28:49Z) - Why mamba is effective? Exploit Linear Transformer-Mamba Network for Multi-Modality Image Fusion [15.79138560700532]
We propose a dual-branch image fusion network called Tmamba.
It consists of linear Transformer and Mamba, which has global modeling capabilities while maintaining linear complexity.
Experiments show that our Tmamba achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2024-09-05T03:42:11Z) - FusionMamba: Dynamic Feature Enhancement for Multimodal Image Fusion with Mamba [17.75933946414591]
Multi-modal image fusion aims to combine information from different modes to create a single image with detailed textures.
Transformer-based models, while excelling in global feature modeling, confront computational challenges stemming from their quadratic complexity.
We propose FusionMamba, a novel dynamic feature enhancement method for multimodal image fusion with Mamba.
arXiv Detail & Related papers (2024-04-15T06:37:21Z) - A Novel State Space Model with Local Enhancement and State Sharing for Image Fusion [14.293042131263924]
In image fusion tasks, images from different sources possess distinct characteristics.
Mamba, as a state space model, has emerged in the field of natural language processing.
Motivated by these challenges, we customize and improve the vision Mamba network designed for the image fusion task.
arXiv Detail & Related papers (2024-04-14T16:09:33Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
Cross-modality fusing information from different modalities effectively improves object detection performance.
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction.
Our proposed approach outperforms the state-of-the-art methods on $m$AP with 5.9% on $M3FD$ and 4.9% on FLIR-Aligned datasets.
arXiv Detail & Related papers (2024-04-14T05:28:46Z) - MambaDFuse: A Mamba-based Dual-phase Model for Multi-modality Image Fusion [4.2474907126377115]
Multi-modality image fusion (MMIF) aims to integrate complementary information from different modalities into a single fused image.
We propose a Mamba-based Dual-phase Fusion model (MambaDFuse) to extract modality-specific and modality-fused features.
Our approach achieves promising fusion results in infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2024-04-12T11:33:26Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - A Task-guided, Implicitly-searched and Meta-initialized Deep Model for
Image Fusion [69.10255211811007]
We present a Task-guided, Implicit-searched and Meta- generalizationd (TIM) deep model to address the image fusion problem in a challenging real-world scenario.
Specifically, we propose a constrained strategy to incorporate information from downstream tasks to guide the unsupervised learning process of image fusion.
Within this framework, we then design an implicit search scheme to automatically discover compact architectures for our fusion model with high efficiency.
arXiv Detail & Related papers (2023-05-25T08:54:08Z) - Equivariant Multi-Modality Image Fusion [124.11300001864579]
We propose the Equivariant Multi-Modality imAge fusion paradigm for end-to-end self-supervised learning.
Our approach is rooted in the prior knowledge that natural imaging responses are equivariant to certain transformations.
Experiments confirm that EMMA yields high-quality fusion results for infrared-visible and medical images.
arXiv Detail & Related papers (2023-05-19T05:50:24Z) - Image Fusion Transformer [75.71025138448287]
In image fusion, images obtained from different sensors are fused to generate a single image with enhanced information.
In recent years, state-of-the-art methods have adopted Convolution Neural Networks (CNNs) to encode meaningful features for image fusion.
We propose a novel Image Fusion Transformer (IFT) where we develop a transformer-based multi-scale fusion strategy.
arXiv Detail & Related papers (2021-07-19T16:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.