Generative Information Retrieval Evaluation
- URL: http://arxiv.org/abs/2404.08137v3
- Date: Thu, 30 Jan 2025 00:52:34 GMT
- Title: Generative Information Retrieval Evaluation
- Authors: Marwah Alaofi, Negar Arabzadeh, Charles L. A. Clarke, Mark Sanderson,
- Abstract summary: We consider generative information retrieval evaluation from two distinct but interrelated perspectives.<n>First, large language models (LLMs) themselves are rapidly becoming tools for evaluation.<n>Second, we consider the evaluation of emerging LLM-based generative information retrieval (GenIR) systems.
- Score: 32.38444700888198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this chapter, we consider generative information retrieval evaluation from two distinct but interrelated perspectives. First, large language models (LLMs) themselves are rapidly becoming tools for evaluation, with current research indicating that LLMs may be superior to crowdsource workers and other paid assessors on basic relevance judgement tasks. We review past and ongoing related research, including speculation on the future of shared task initiatives, such as TREC, and a discussion on the continuing need for human assessments. Second, we consider the evaluation of emerging LLM-based generative information retrieval (GenIR) systems, including retrieval augmented generation (RAG) systems. We consider approaches that focus both on the end-to-end evaluation of GenIR systems and on the evaluation of a retrieval component as an element in a RAG system. Going forward, we expect the evaluation of GenIR systems to be at least partially based on LLM-based assessment, creating an apparent circularity, with a system seemingly evaluating its own output. We resolve this apparent circularity in two ways: 1) by viewing LLM-based assessment as a form of "slow search", where a slower IR system is used for evaluation and training of a faster production IR system; and 2) by recognizing a continuing need to ground evaluation in human assessment, even if the characteristics of that human assessment must change.
Related papers
- Evaluation and Benchmarking of LLM Agents: A Survey [2.75311233296471]
This survey introduces a two-dimensional taxonomy that organizes existing work along evaluation objectives.<n>We highlight enterprise-specific challenges, such as role-based access to data.<n>We also identify future research directions, including holistic, more realistic, and scalable evaluation.
arXiv Detail & Related papers (2025-07-29T04:57:02Z) - Can LLMs Be Trusted for Evaluating RAG Systems? A Survey of Methods and Datasets [0.0]
Retrieval-Augmented Generation (RAG) has advanced significantly in recent years.
RAG complexity poses substantial challenges for systematic evaluation and quality enhancement.
This study systematically reviews 63 academic articles to provide a comprehensive overview of state-of-the-art RAG evaluation methodologies.
arXiv Detail & Related papers (2025-04-28T08:22:19Z) - Toward Generalizable Evaluation in the LLM Era: A Survey Beyond Benchmarks [229.73714829399802]
This survey probes the core challenges that the rise of Large Language Models poses for evaluation.
We identify and analyze two pivotal transitions: (i) from task-specific to capability-based evaluation, which reorganizes benchmarks around core competencies such as knowledge, reasoning, instruction following, multi-modal understanding, and safety.
We will dissect this issue, along with the core challenges of the above two transitions, from the perspectives of methods, datasets, evaluators, and metrics.
arXiv Detail & Related papers (2025-04-26T07:48:52Z) - LLM-based relevance assessment still can't replace human relevance assessment [12.829823535454505]
Recent studies suggest that large language models (LLMs) for relevance assessment in information retrieval provide comparable evaluations to human judgments.<n>Upadhyay et al. claim that LLM-based relevance assessments can fully replace traditional human relevance assessments in TREC-style evaluations.<n>This paper critically examines this claim, highlighting practical and theoretical limitations that undermine the validity of this conclusion.
arXiv Detail & Related papers (2024-12-22T20:45:15Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.
In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.
This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - Limitations of Automatic Relevance Assessments with Large Language Models for Fair and Reliable Retrieval Evaluation [2.9180406633632523]
Large language models (LLMs) are gaining much attention as tools for automatic relevance assessment.
Recent research has shown that LLM-based assessments yield high systems ranking correlation with human-made judgements.
We look at how LLM-generated judgements preserve ranking differences among top-performing systems and also how they preserve pairwise significance evaluation as human judgements.
arXiv Detail & Related papers (2024-11-20T11:19:35Z) - CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1 is the first open-source textbfall-in-one judge LLM.
CompassJudger-1 is a general-purpose LLM that demonstrates remarkable versatility.
textbfJudgerBench is a new benchmark that encompasses various subjective evaluation tasks.
arXiv Detail & Related papers (2024-10-21T17:56:51Z) - ReIFE: Re-evaluating Instruction-Following Evaluation [105.75525154888655]
We present a thorough meta-evaluation of instruction following, including 25 base LLMs and 15 proposed evaluation protocols.
Our evaluation allows us to identify the best-performing base LLMs and evaluation protocols with a high degree of robustness.
arXiv Detail & Related papers (2024-10-09T17:14:50Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language.<n>LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments.<n>We introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally.
arXiv Detail & Related papers (2024-03-25T17:11:28Z) - Evaluating Generative Ad Hoc Information Retrieval [58.800799175084286]
generative retrieval systems often directly return a grounded generated text as a response to a query.
Quantifying the utility of the textual responses is essential for appropriately evaluating such generative ad hoc retrieval.
arXiv Detail & Related papers (2023-11-08T14:05:00Z) - Hierarchical Evaluation Framework: Best Practices for Human Evaluation [17.91641890651225]
The absence of widely accepted human evaluation metrics in NLP hampers fair comparisons among different systems and the establishment of universal assessment standards.
We develop our own hierarchical evaluation framework to provide a more comprehensive representation of the NLP system's performance.
In future work, we will investigate the potential time-saving benefits of our proposed framework for evaluators assessing NLP systems.
arXiv Detail & Related papers (2023-10-03T09:46:02Z) - Style Over Substance: Evaluation Biases for Large Language Models [17.13064447978519]
This study investigates the behavior of crowd-sourced and expert annotators, as well as large language models (LLMs)
Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors.
We propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score.
arXiv Detail & Related papers (2023-07-06T14:42:01Z) - Revisiting the Gold Standard: Grounding Summarization Evaluation with
Robust Human Evaluation [136.16507050034755]
Existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale.
We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units.
We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems.
arXiv Detail & Related papers (2022-12-15T17:26:05Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.