Improving Continuous Sign Language Recognition with Adapted Image Models
- URL: http://arxiv.org/abs/2404.08226v1
- Date: Fri, 12 Apr 2024 03:43:37 GMT
- Title: Improving Continuous Sign Language Recognition with Adapted Image Models
- Authors: Lianyu Hu, Tongkai Shi, Liqing Gao, Zekang Liu, Wei Feng,
- Abstract summary: Large-scale vision-language models (e.g., CLIP) have shown impressive generalization performance over a series of downstream tasks.
To enable high efficiency when adapting these large vision-language models to performing continuous sign language recognition, we propose a novel strategy (AdaptSign)
AdaptSign is able to demonstrate superior performance across a series of CSLR benchmarks including PHOENIX14, PHOENIX14-T, CSL-Daily and CSL compared to existing methods.
- Score: 9.366498095041814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increase of web-scale weakly labelled image-text pairs have greatly facilitated the development of large-scale vision-language models (e.g., CLIP), which have shown impressive generalization performance over a series of downstream tasks. However, the massive model size and scarcity of available data limit their applications to fine-tune the whole model in downstream tasks. Besides, fully fine-tuning the model easily forgets the generic essential knowledge acquired in the pretraining stage and overfits the downstream data. To enable high efficiency when adapting these large vision-language models (e.g., CLIP) to performing continuous sign language recognition (CSLR) while preserving their generalizability, we propose a novel strategy (AdaptSign). Especially, CLIP is adopted as the visual backbone to extract frame-wise features whose parameters are fixed, and a set of learnable modules are introduced to model spatial sign variations or capture temporal sign movements. The introduced additional modules are quite lightweight, only owning 3.2% extra computations with high efficiency. The generic knowledge acquired in the pretraining stage is well-preserved in the frozen CLIP backbone in this process. Extensive experiments show that despite being efficient, AdaptSign is able to demonstrate superior performance across a series of CSLR benchmarks including PHOENIX14, PHOENIX14-T, CSL-Daily and CSL compared to existing methods. Visualizations show that AdaptSign could learn to dynamically pay major attention to the informative spatial regions and cross-frame trajectories in sign videos.
Related papers
- CLIP-SCGI: Synthesized Caption-Guided Inversion for Person Re-Identification [9.996589403019675]
Person re-identification (ReID) has recently benefited from large pretrained vision-language models such as Contrastive Language-Image Pre-Training (CLIP)
We propose one straightforward solution by leveraging existing image captioning models to generate pseudo captions for person images.
We introduce CLIP-SCGI, a framework that leverages synthesized captions to guide the learning of discriminative and robust representations.
arXiv Detail & Related papers (2024-10-12T06:24:33Z) - CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning [4.004641316826348]
We introduce a novel language-image Contrastive Learning method with an Efficient large language model and prompt Fine-Tuning (CLEFT)
Our method demonstrates state-of-the-art performance on multiple chest X-ray and mammography datasets.
The proposed parameter efficient framework can reduce the total trainable model size by 39% and reduce the trainable language model to only 4% compared with the current BERT encoder.
arXiv Detail & Related papers (2024-07-30T17:57:32Z) - Pay Attention to Your Neighbours: Training-Free Open-Vocabulary Semantic Segmentation [19.20874993309959]
vision-language foundation models, such as CLIP, have showcased remarkable effectiveness in numerous zero-shot image-level tasks.
We propose a baseline for training-free OVSS, termed Neighbour-Aware CLIP (NACLIP)
Our method enforces localization of patches in the self-attention of CLIP's vision transformer which, despite being crucial for dense prediction tasks, has been overlooked in the OVSS literature.
arXiv Detail & Related papers (2024-04-12T01:08:04Z) - Towards Online Continuous Sign Language Recognition and Translation [37.23962699105158]
Research on continuous sign language recognition is essential to bridge the communication gap between deaf and hearing individuals.
We develop a sign dictionary, train an isolated sign language recognition model on the dictionary, and employ a sliding window approach on the input sign sequence.
Our online recognition model can be extended to support online translation by integrating a gloss-to-text network.
arXiv Detail & Related papers (2024-01-10T18:59:53Z) - Meta-Adapter: An Online Few-shot Learner for Vision-Language Model [64.21017759533474]
Contrastive vision-language pre-training, known as CLIP, demonstrates remarkable potential in perceiving open-world visual concepts.
Few-shot learning methods based on CLIP typically require offline fine-tuning of the parameters on few-shot samples.
We propose the Meta-Adapter, a lightweight residual-style adapter, to refine the CLIP features guided by the few-shot samples in an online manner.
arXiv Detail & Related papers (2023-11-07T07:27:16Z) - CLIP meets Model Zoo Experts: Pseudo-Supervision for Visual Enhancement [65.47237619200442]
Contrastive language image pretraining (CLIP) is a standard method for training vision-language models.
We augment CLIP training with task-specific vision models from model zoos to improve its visual representations.
This simple setup shows substantial improvements of up to 16.3% across different vision tasks.
arXiv Detail & Related papers (2023-10-21T20:20:13Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$ is a framework designed for the pre-training of visually conditioned language generation models.
We show that our approach accelerates the training of vision-language models by a factor of 5 without a noticeable impact on overall performance.
arXiv Detail & Related papers (2023-10-05T03:40:06Z) - Joint Adaptive Representations for Image-Language Learning [59.40890927221377]
We propose a recipe for image-language learning, which produces effective models, outperforming bigger and more expensive ones, often trained on orders of magnitude larger datasets.
Our key finding is the joint learning of a compact vision and language representation, which adaptively and iteratively fuses the multi-modal features.
With only 40M training examples and with 39 GFLOPs our lightweight model outperforms many times larger state-of-the-art models of 2-20x more FLOPs and using bigger datasets some of which with close to 1B training examples.
arXiv Detail & Related papers (2023-05-31T15:02:02Z) - Boosting Visual-Language Models by Exploiting Hard Samples [126.35125029639168]
HELIP is a cost-effective strategy tailored to enhance the performance of existing CLIP models.
Our method allows for effortless integration with existing models' training pipelines.
On comprehensive benchmarks, HELIP consistently boosts existing models to achieve leading performance.
arXiv Detail & Related papers (2023-05-09T07:00:17Z) - SignBERT+: Hand-model-aware Self-supervised Pre-training for Sign
Language Understanding [132.78015553111234]
Hand gesture serves as a crucial role during the expression of sign language.
Current deep learning based methods for sign language understanding (SLU) are prone to over-fitting due to insufficient sign data resource.
We propose the first self-supervised pre-trainable SignBERT+ framework with model-aware hand prior incorporated.
arXiv Detail & Related papers (2023-05-08T17:16:38Z) - Improving Continuous Sign Language Recognition with Consistency
Constraints and Signer Removal [24.537234147678113]
We propose three auxiliary tasks to enhance the CSLR backbones.
A keypoint-guided spatial attention module is developed to enforce the visual module.
A sentence embedding consistency constraint is imposed between the visual and sequential modules.
Our model achieves state-of-the-art or competitive performance on five benchmarks.
arXiv Detail & Related papers (2022-12-26T06:38:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.