Calibration & Reconstruction: Deep Integrated Language for Referring Image Segmentation
- URL: http://arxiv.org/abs/2404.08281v1
- Date: Fri, 12 Apr 2024 07:13:32 GMT
- Title: Calibration & Reconstruction: Deep Integrated Language for Referring Image Segmentation
- Authors: Yichen Yan, Xingjian He, Sihan Chen, Jing Liu,
- Abstract summary: Referring image segmentation aims to segment an object referred to by natural language expression from an image.
Conventional transformer decoders can distort linguistic information with deeper layers, leading to suboptimal results.
We introduce CRFormer, a model that iteratively calibrates multi-modal features in the transformer decoder.
- Score: 8.225408779913712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring image segmentation aims to segment an object referred to by natural language expression from an image. The primary challenge lies in the efficient propagation of fine-grained semantic information from textual features to visual features. Many recent works utilize a Transformer to address this challenge. However, conventional transformer decoders can distort linguistic information with deeper layers, leading to suboptimal results. In this paper, we introduce CRFormer, a model that iteratively calibrates multi-modal features in the transformer decoder. We start by generating language queries using vision features, emphasizing different aspects of the input language. Then, we propose a novel Calibration Decoder (CDec) wherein the multi-modal features can iteratively calibrated by the input language features. In the Calibration Decoder, we use the output of each decoder layer and the original language features to generate new queries for continuous calibration, which gradually updates the language features. Based on CDec, we introduce a Language Reconstruction Module and a reconstruction loss. This module leverages queries from the final layer of the decoder to reconstruct the input language and compute the reconstruction loss. This can further prevent the language information from being lost or distorted. Our experiments consistently show the superior performance of our approach across RefCOCO, RefCOCO+, and G-Ref datasets compared to state-of-the-art methods.
Related papers
- $ε$-VAE: Denoising as Visual Decoding [61.29255979767292]
In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space.
Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input.
We propose denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder.
We evaluate our approach by assessing both reconstruction (rFID) and generation quality (
arXiv Detail & Related papers (2024-10-05T08:27:53Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
The seq2seq task aims at generating the target sequence based on the given input source sequence.
Traditionally, most of the seq2seq task is resolved by an encoder to encode the source sequence and a decoder to generate the target text.
Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task.
arXiv Detail & Related papers (2023-04-08T15:44:29Z) - Inflected Forms Are Redundant in Question Generation Models [27.49894653349779]
We propose an approach to enhance the performance of Question Generation using an encoder-decoder framework.
Firstly, we identify the inflected forms of words from the input of encoder, and replace them with the root words.
Secondly, we propose to adapt QG as a combination of the following actions in the encode-decoder framework: generating a question word, copying a word from the source sequence or generating a word transformation type.
arXiv Detail & Related papers (2023-01-01T13:08:11Z) - LAVT: Language-Aware Vision Transformer for Referring Image Segmentation [80.54244087314025]
We show that better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in vision Transformer encoder network.
Our method surpasses the previous state-of-the-art methods on RefCOCO, RefCO+, and G-Ref by large margins.
arXiv Detail & Related papers (2021-12-04T04:53:35Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
We build a sentence-level autoencoder from a pretrained, frozen transformer language model.
We adapt the masked language modeling objective as a generative, denoising one, while only training a sentence bottleneck and a single-layer modified transformer decoder.
We demonstrate that the sentence representations discovered by our model achieve better quality than previous methods that extract representations from pretrained transformers on text similarity tasks, style transfer, and single-sentence classification tasks in the GLUE benchmark, while using fewer parameters than large pretrained models.
arXiv Detail & Related papers (2021-08-31T19:39:55Z) - On the Sub-Layer Functionalities of Transformer Decoder [74.83087937309266]
We study how Transformer-based decoders leverage information from the source and target languages.
Based on these insights, we demonstrate that the residual feed-forward module in each Transformer decoder layer can be dropped with minimal loss of performance.
arXiv Detail & Related papers (2020-10-06T11:50:54Z) - Bi-Decoder Augmented Network for Neural Machine Translation [108.3931242633331]
We propose a novel Bi-Decoder Augmented Network (BiDAN) for the neural machine translation task.
Since each decoder transforms the representations of the input text into its corresponding language, jointly training with two target ends can make the shared encoder has the potential to produce a language-independent semantic space.
arXiv Detail & Related papers (2020-01-14T02:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.