Mitigating Receiver Impact on Radio Frequency Fingerprint Identification via Domain Adaptation
- URL: http://arxiv.org/abs/2404.08566v1
- Date: Fri, 12 Apr 2024 16:08:32 GMT
- Title: Mitigating Receiver Impact on Radio Frequency Fingerprint Identification via Domain Adaptation
- Authors: Liu Yang, Qiang Li, Xiaoyang Ren, Yi Fang, Shafei Wang,
- Abstract summary: We develop a theoretical generalization error bound for the adaptation model.
Motivated by the bound, we propose a novel method to solve the cross-receiver RFFI problem, which includes domain alignment and adaptive pseudo-labeling.
Experimental results indicate that the proposed method can effectively mitigate the receiver impact and improve the cross-receiver RFFI performance.
- Score: 15.347306554562048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio Frequency Fingerprint Identification (RFFI), which exploits non-ideal hardware-induced unique distortion resident in the transmit signals to identify an emitter, is emerging as a means to enhance the security of communication systems. Recently, machine learning has achieved great success in developing state-of-the-art RFFI models. However, few works consider cross-receiver RFFI problems, where the RFFI model is trained and deployed on different receivers. Due to altered receiver characteristics, direct deployment of RFFI model on a new receiver leads to significant performance degradation. To address this issue, we formulate the cross-receiver RFFI as a model adaptation problem, which adapts the trained model to unlabeled signals from a new receiver. We first develop a theoretical generalization error bound for the adaptation model. Motivated by the bound, we propose a novel method to solve the cross-receiver RFFI problem, which includes domain alignment and adaptive pseudo-labeling. The former aims at finding a feature space where both domains exhibit similar distributions, effectively reducing the domain discrepancy. Meanwhile, the latter employs a dynamic pseudo-labeling scheme to implicitly transfer the label information from the labeled receiver to the new receiver. Experimental results indicate that the proposed method can effectively mitigate the receiver impact and improve the cross-receiver RFFI performance.
Related papers
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Federated Radio Frequency Fingerprinting with Model Transfer and
Adaptation [26.646820912136416]
We propose a federated RF fingerprinting algorithm with a novel strategy called model transfer and adaptation.
The proposed algorithm introduces dense connectivity among convolutional layers into RF fingerprinting to enhance learning accuracy and reduce model complexity.
Compared with state-of-the-art RF fingerprinting algorithms, our algorithm can improve prediction performance considerably with a performance gain of up to 15%.
arXiv Detail & Related papers (2023-02-22T14:55:30Z) - One-shot Generative Distribution Matching for Augmented RF-based UAV Identification [0.0]
This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments.
The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective.
One-shot generative methods for augmenting transformed RF signals offer a significant improvement in UAV identification.
arXiv Detail & Related papers (2023-01-20T02:35:43Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Unsupervised Domain Adaptation for RF-based Gesture Recognition [14.523667781155666]
We propose an unsupervised domain adaptation framework for RF-based gesture recognition.
We first propose pseudo-labeling and consistency regularization to utilize unlabeled data for model training.
We then design two corresponding data augmentation methods based on the characteristic of the RF signals to strengthen the performance of the consistency regularization.
arXiv Detail & Related papers (2021-11-20T14:25:35Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
Radio-frequency fingerprints(RFFs) are promising solutions for realizing low-cost physical layer authentication.
Machine learning-based methods have been proposed for RFF extraction and discrimination.
We propose a new end-to-end deep learning framework for extracting RFFs from raw received signals.
arXiv Detail & Related papers (2021-08-10T03:59:37Z) - FedRec: Federated Learning of Universal Receivers over Fading Channels [92.15358738530037]
We propose a neural network-based symbol detection technique for downlink fading channels.
Multiple users collaborate to jointly learn a universal data-driven detector, hence the name FedRec.
The performance of the resulting receiver is shown to approach the MAP performance in diverse channel conditions without requiring knowledge of the fading statistics.
arXiv Detail & Related papers (2020-11-14T11:29:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.