Advanced wood species identification based on multiple anatomical sections and using deep feature transfer and fusion
- URL: http://arxiv.org/abs/2404.08585v1
- Date: Fri, 12 Apr 2024 16:30:15 GMT
- Title: Advanced wood species identification based on multiple anatomical sections and using deep feature transfer and fusion
- Authors: Kallil M. Zielinski, Leonardo Scabini, Lucas C. Ribas, NĂºbia R. da Silva, Hans Beeckman, Jan Verwaeren, Odemir M. Bruno, Bernard De Baets,
- Abstract summary: Methods like DNA analysis, Near Infrared (NIR) spectroscopy, and Direct Analysis in Real Time (DART) mass spectrometry complement the long-established wood anatomical assessment of cell and tissue morphology.
Most of these methods have some limitations such as high costs, the need for skilled experts for data interpretation, and the lack of good datasets for professional reference.
In this paper, we apply two transfer learning techniques with Convolutional Neural Networks to a multi-view Congolese wood species dataset.
Our results indicate superior accuracy on diverse datasets and anatomical sections, surpassing the results of other methods.
- Score: 8.844437603161198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, we have seen many advancements in wood species identification. Methods like DNA analysis, Near Infrared (NIR) spectroscopy, and Direct Analysis in Real Time (DART) mass spectrometry complement the long-established wood anatomical assessment of cell and tissue morphology. However, most of these methods have some limitations such as high costs, the need for skilled experts for data interpretation, and the lack of good datasets for professional reference. Therefore, most of these methods, and certainly the wood anatomical assessment, may benefit from tools based on Artificial Intelligence. In this paper, we apply two transfer learning techniques with Convolutional Neural Networks (CNNs) to a multi-view Congolese wood species dataset including sections from different orientations and viewed at different microscopic magnifications. We explore two feature extraction methods in detail, namely Global Average Pooling (GAP) and Random Encoding of Aggregated Deep Activation Maps (RADAM), for efficient and accurate wood species identification. Our results indicate superior accuracy on diverse datasets and anatomical sections, surpassing the results of other methods. Our proposal represents a significant advancement in wood species identification, offering a robust tool to support the conservation of forest ecosystems and promote sustainable forestry practices.
Related papers
- Unsupervised deep learning for semantic segmentation of multispectral LiDAR forest point clouds [1.6633665061166945]
This study proposes a fully unsupervised deep learning method for leaf-wood separation of high-density laser scanning point clouds.
GrowSP-ForMS achieved a mean accuracy of 84.3% and a mean intersection over union (mIoU) of 69.6% on our MS test set.
arXiv Detail & Related papers (2025-02-10T07:58:49Z) - Multi-modal classification of forest biodiversity potential from 2D orthophotos and 3D airborne laser scanning point clouds [47.679877727066206]
This study investigates whether deep learning-based fusion of close-range sensing data from 2D orthophotos and 3D airborne laser scanning (ALS) point clouds can enhance biodiversity assessment.
We introduce the BioVista dataset, comprising 44.378 paired samples of orthophotos and ALS point clouds from temperate forests in Denmark.
Using deep neural networks (ResNet for orthophotos and PointResNet for ALS point clouds), we investigate each data modality's ability to assess forest biodiversity potential, achieving mean accuracies of 69.4% and 72.8%, respectively.
arXiv Detail & Related papers (2025-01-03T09:42:25Z) - Tree Species Classification using Machine Learning and 3D Tomographic SAR -- a case study in Northern Europe [0.0]
Tree species classification plays an important role in nature conservation, forest inventories, forest management, and the protection of endangered species.
In this study, we employed TomoSense, a 3D tomographic dataset, which utilizes a stack of single-look complex (SLC) images.
arXiv Detail & Related papers (2024-11-19T22:25:26Z) - Deep Learning methodology for the identification of wood species using high-resolution macroscopic images [6.510691480587631]
This work contributes to automate the identification of wood species via high-resolution macroscopic images of timber.
We propose a Timber Deep Learning Identification with Patch-based Inference Voting methodology, abbreviated TDLI-PIV.
Our data set contains 2120 images of timber and covers 37 legally protected wood species.
arXiv Detail & Related papers (2024-06-17T17:31:57Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
We present evidence suggesting that depthwise convolutional kernels are effectively replicating the biological receptive fields observed in the mammalian retina.
We propose a scheme that draws inspiration from the biological receptive fields.
arXiv Detail & Related papers (2024-01-18T18:06:22Z) - Automating Wood Species Detection and Classification in Microscopic
Images of Fibrous Materials with Deep Learning [1.231476564107544]
We have developed a methodology for the systematic generation of a large image dataset of macerated wood references.
This is the basis for a substantial approach to automate, for the first time, the identification of hardwood species in microscopic images of fibrous materials by deep learning.
arXiv Detail & Related papers (2023-07-18T19:51:28Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Classification of Single Tree Decay Stages from Combined Airborne LiDAR
Data and CIR Imagery [1.4589991363650008]
This study, for the first time, automatically categorizing individual trees (Norway spruce) into five decay stages.
Three different Machine Learning methods - 3D point cloud-based deep learning (KPConv), Convolutional Neural Network (CNN), and Random Forest (RF)
All models achieved promising results, reaching overall accuracy (OA) of up to 88.8%, 88.4% and 85.9% for KPConv, CNN and RF, respectively.
arXiv Detail & Related papers (2023-01-04T22:20:16Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.