$F_β$-plot -- a visual tool for evaluating imbalanced data classifiers
- URL: http://arxiv.org/abs/2404.08709v1
- Date: Thu, 11 Apr 2024 18:07:57 GMT
- Title: $F_β$-plot -- a visual tool for evaluating imbalanced data classifiers
- Authors: Szymon Wojciechowski, Michał Woźniak,
- Abstract summary: The paper proposes a simple approach to analyzing the popular parametric metric $F_beta$.
It is possible to indicate for a given pool of analyzed classifiers when a given model should be preferred depending on user requirements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of the significant problems associated with imbalanced data classification is the lack of reliable metrics. This runs primarily from the fact that for most real-life (as well as commonly used benchmark) problems, we do not have information from the user on the actual form of the loss function that should be minimized. Although it is pretty common to have metrics indicating the classification quality within each class, for the end user, the analysis of several such metrics is then required, which in practice causes difficulty in interpreting the usefulness of a given classifier. Hence, many aggregate metrics have been proposed or adopted for the imbalanced data classification problem, but there is still no consensus on which should be used. An additional disadvantage is their ambiguity and systematic bias toward one class. Moreover, their use in analyzing experimental results in recognition of those classification models that perform well for the chosen aggregated metrics is burdened with the drawbacks mentioned above. Hence, the paper proposes a simple approach to analyzing the popular parametric metric $F_\beta$. We point out that it is possible to indicate for a given pool of analyzed classifiers when a given model should be preferred depending on user requirements.
Related papers
- Revisiting Evaluation Metrics for Semantic Segmentation: Optimization
and Evaluation of Fine-grained Intersection over Union [113.20223082664681]
We propose the use of fine-grained mIoUs along with corresponding worst-case metrics.
These fine-grained metrics offer less bias towards large objects, richer statistical information, and valuable insights into model and dataset auditing.
Our benchmark study highlights the necessity of not basing evaluations on a single metric and confirms that fine-grained mIoUs reduce the bias towards large objects.
arXiv Detail & Related papers (2023-10-30T03:45:15Z) - Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
Regression tasks in computer vision are often formulated into classification by quantizing the target space into classes.
The majority of training samples lie in a head range of target values, while a minority of samples span a usually larger tail range.
We propose to construct hierarchical classifiers for solving imbalanced regression tasks.
Our novel hierarchical classification adjustment (HCA) for imbalanced regression shows superior results on three diverse tasks.
arXiv Detail & Related papers (2023-10-26T04:54:39Z) - Characterizing the Optimal 0-1 Loss for Multi-class Classification with
a Test-time Attacker [57.49330031751386]
We find achievable information-theoretic lower bounds on loss in the presence of a test-time attacker for multi-class classifiers on any discrete dataset.
We provide a general framework for finding the optimal 0-1 loss that revolves around the construction of a conflict hypergraph from the data and adversarial constraints.
arXiv Detail & Related papers (2023-02-21T15:17:13Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification [11.125446871030734]
Class distribution skews in imbalanced datasets may lead to models with prediction bias towards majority classes.
We propose a simple and general-purpose evaluation framework for imbalanced data classification that is sensitive to arbitrary skews in class cardinalities and importances.
arXiv Detail & Related papers (2020-10-12T19:47:09Z) - Classification Performance Metric for Imbalance Data Based on Recall and
Selectivity Normalized in Class Labels [0.0]
We introduce a new performance measure based on the harmonic mean of Recall and Selectivity normalized in class labels.
This paper shows that the proposed performance measure has the right properties for the imbalanced dataset.
arXiv Detail & Related papers (2020-06-23T20:38:48Z) - Classifier uncertainty: evidence, potential impact, and probabilistic
treatment [0.0]
We present an approach to quantify the uncertainty of classification performance metrics based on a probability model of the confusion matrix.
We show that uncertainties can be surprisingly large and limit performance evaluation.
arXiv Detail & Related papers (2020-06-19T12:49:19Z) - On Model Evaluation under Non-constant Class Imbalance [0.0]
Many real-world classification problems are significantly class-imbalanced to detriment of the class of interest.
The usual assumption is that the test dataset imbalance equals the real-world imbalance.
We introduce methods focusing on evaluation under non-constant class imbalance.
arXiv Detail & Related papers (2020-01-15T21:52:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.