Convergence of coordinate ascent variational inference for log-concave measures via optimal transport
- URL: http://arxiv.org/abs/2404.08792v1
- Date: Fri, 12 Apr 2024 19:43:54 GMT
- Title: Convergence of coordinate ascent variational inference for log-concave measures via optimal transport
- Authors: Manuel Arnese, Daniel Lacker,
- Abstract summary: Mean field inference (VI) is the problem of finding the closest product (factorized) measure.
The well known Ascent Variational Inference (CAVI) aims this approximate measure by variation over one coordinate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mean field variational inference (VI) is the problem of finding the closest product (factorized) measure, in the sense of relative entropy, to a given high-dimensional probability measure $\rho$. The well known Coordinate Ascent Variational Inference (CAVI) algorithm aims to approximate this product measure by iteratively optimizing over one coordinate (factor) at a time, which can be done explicitly. Despite its popularity, the convergence of CAVI remains poorly understood. In this paper, we prove the convergence of CAVI for log-concave densities $\rho$. If additionally $\log \rho$ has Lipschitz gradient, we find a linear rate of convergence, and if also $\rho$ is strongly log-concave, we find an exponential rate. Our analysis starts from the observation that mean field VI, while notoriously non-convex in the usual sense, is in fact displacement convex in the sense of optimal transport when $\rho$ is log-concave. This allows us to adapt techniques from the optimization literature on coordinate descent algorithms in Euclidean space.
Related papers
- Distributed Optimization via Energy Conservation Laws in Dilated Coordinates [5.35599092568615]
This paper introduces an energy conservation approach for analyzing continuous-time dynamical systems in dilated coordinates.
convergence rates can be explicitly expressed in terms of the inverse time-dilation factor.
Its accelerated convergence behavior is benchmarked against various state-of-the-art distributed optimization algorithms on practical, large-scale problems.
arXiv Detail & Related papers (2024-09-28T08:02:43Z) - Convergence rate of random scan Coordinate Ascent Variational Inference under log-concavity [0.18416014644193066]
The Coordinate Ascent Variational Inference scheme is a popular algorithm used to compute the mean-field approximation of a probability distribution of interest.
We analyze its random scan version, under log-concavity assumptions on the target density.
arXiv Detail & Related papers (2024-06-11T14:23:01Z) - Extending Mean-Field Variational Inference via Entropic Regularization: Theory and Computation [2.2656885622116394]
Variational inference (VI) has emerged as a popular method for approximate inference for high-dimensional Bayesian models.
We propose a novel VI method that extends the naive mean field via entropic regularization.
We show that $Xi$-variational posteriors effectively recover the true posterior dependency.
arXiv Detail & Related papers (2024-04-14T01:40:11Z) - Transformers as Support Vector Machines [54.642793677472724]
We establish a formal equivalence between the optimization geometry of self-attention and a hard-margin SVM problem.
We characterize the implicit bias of 1-layer transformers optimized with gradient descent.
We believe these findings inspire the interpretation of transformers as a hierarchy of SVMs that separates and selects optimal tokens.
arXiv Detail & Related papers (2023-08-31T17:57:50Z) - Convergence of Adam Under Relaxed Assumptions [72.24779199744954]
We show that Adam converges to $epsilon$-stationary points with $O(epsilon-4)$ gradient complexity under far more realistic conditions.
We also propose a variance-reduced version of Adam with an accelerated gradient complexity of $O(epsilon-3)$.
arXiv Detail & Related papers (2023-04-27T06:27:37Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
We show the worst-case complexity of convergence $tildeO(t-1/4)$ and MoreautildeO(vareps-4)$ for smooth non- optimization.
We obtain first online nonnegative matrix factorization algorithms for dependent data based on projected gradient methods with adaptive step sizes and optimal convergence.
arXiv Detail & Related papers (2022-03-29T17:59:10Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Proximal Gradient Descent-Ascent: Variable Convergence under K{\L}
Geometry [49.65455534654459]
The finite descent-ascent parameters (GDA) has been widely applied to solve minimax optimization problems.
This paper fills such a gap by studying the convergence of the KL-Lized geometry.
arXiv Detail & Related papers (2021-02-09T05:35:53Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
We analyze the convergence of single-pass, fixed step-size gradient descent on the least-square risk under this model.
As a special case, we analyze an online algorithm for estimating a real function on the unit interval from the noiseless observation of its value at randomly sampled points.
arXiv Detail & Related papers (2020-06-15T08:25:50Z) - Spectral density estimation with the Gaussian Integral Transform [91.3755431537592]
spectral density operator $hatrho(omega)=delta(omega-hatH)$ plays a central role in linear response theory.
We describe a near optimal quantum algorithm providing an approximation to the spectral density.
arXiv Detail & Related papers (2020-04-10T03:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.