CodeCloak: A Method for Evaluating and Mitigating Code Leakage by LLM Code Assistants
- URL: http://arxiv.org/abs/2404.09066v3
- Date: Tue, 29 Oct 2024 13:43:58 GMT
- Title: CodeCloak: A Method for Evaluating and Mitigating Code Leakage by LLM Code Assistants
- Authors: Amit Finkman Noah, Avishag Shapira, Eden Bar Kochva, Inbar Maimon, Dudu Mimran, Yuval Elovici, Asaf Shabtai,
- Abstract summary: CodeCloak is a novel deep reinforcement learning agent that manipulates the prompts before sending them to the code assistant service.
CodeCloak aims to achieve the following two contradictory goals: (i) minimizing code leakage, while (ii) preserving relevant and useful suggestions for the developer.
- Score: 22.342331134131744
- License:
- Abstract: LLM-based code assistants are becoming increasingly popular among developers. These tools help developers improve their coding efficiency and reduce errors by providing real-time suggestions based on the developer's codebase. While beneficial, the use of these tools can inadvertently expose the developer's proprietary code to the code assistant service provider during the development process. In this work, we propose a method to mitigate the risk of code leakage when using LLM-based code assistants. CodeCloak is a novel deep reinforcement learning agent that manipulates the prompts before sending them to the code assistant service. CodeCloak aims to achieve the following two contradictory goals: (i) minimizing code leakage, while (ii) preserving relevant and useful suggestions for the developer. Our evaluation, employing StarCoder and Code Llama, LLM-based code assistants models, demonstrates CodeCloak's effectiveness on a diverse set of code repositories of varying sizes, as well as its transferability across different models. We also designed a method for reconstructing the developer's original codebase from code segments sent to the code assistant service (i.e., prompts) during the development process, to thoroughly analyze code leakage risks and evaluate the effectiveness of CodeCloak under practical development scenarios.
Related papers
- Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [10.510325069289324]
We propose a self-refinement method aimed at improving the reliability of code generated by LLMs.
Our approach is based on targeted Verification Questions (VQs) to identify potential bugs within the initial code.
Our method attempts to repair these potential bugs by re-prompting the LLM with the targeted VQs and the initial code.
arXiv Detail & Related papers (2024-05-22T19:02:50Z) - AI-powered Code Review with LLMs: Early Results [10.37036924997437]
We present a novel approach to improving software quality and efficiency through a Large Language Model (LLM)-based model.
Our proposed LLM-based AI agent model is trained on large code repositories.
It aims to detect code smells, identify potential bugs, provide suggestions for improvement, and optimize the code.
arXiv Detail & Related papers (2024-04-29T08:27:50Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.
CodeIP is a novel multi-bit watermarking technique that embeds additional information to preserve provenance details.
Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
We propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy.
Results indicate that MANGO significantly improves the code pass rate based on the strong baselines.
The robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting.
arXiv Detail & Related papers (2024-04-11T08:30:46Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
We introduce a multipurpose code vulnerability analysis system textttSecRepair, powered by a large language model, CodeGen2.
Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs.
We identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub.
arXiv Detail & Related papers (2024-01-07T02:46:39Z) - A^3-CodGen: A Repository-Level Code Generation Framework for Code Reuse with Local-Aware, Global-Aware, and Third-Party-Library-Aware [13.27883339389175]
We propose a novel code generation framework, dubbed A3-CodGen, to harness information within the code repository to generate code with fewer potential logical errors.
Results demonstrate that by adopting the A3-CodGen framework, we successfully extract, fuse, and feed code repository information into the LLM, generating more accurate, efficient, and highly reusable code.
arXiv Detail & Related papers (2023-12-10T05:36:06Z) - Function-constrained Program Synthesis [12.55507214959886]
Large language models (LLMs) can generate code in real-time by drawing on all code available in a development environment.
Current systems lack effective recovery methods, forcing users to iteratively re-prompt the model with modified prompts until a sufficient solution is reached.
Our method constrains code-generation to an explicit function set and enabling recovery from failed attempts through automatically generated sub-functions.
arXiv Detail & Related papers (2023-11-27T02:55:34Z) - CONCORD: Clone-aware Contrastive Learning for Source Code [64.51161487524436]
Self-supervised pre-training has gained traction for learning generic code representations valuable for many downstream SE tasks.
We argue that it is also essential to factor in how developers code day-to-day for general-purpose representation learning.
In particular, we propose CONCORD, a self-supervised, contrastive learning strategy to place benign clones closer in the representation space while moving deviants further apart.
arXiv Detail & Related papers (2023-06-05T20:39:08Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.