LoopAnimate: Loopable Salient Object Animation
- URL: http://arxiv.org/abs/2404.09172v2
- Date: Tue, 16 Apr 2024 14:56:32 GMT
- Title: LoopAnimate: Loopable Salient Object Animation
- Authors: Fanyi Wang, Peng Liu, Haotian Hu, Dan Meng, Jingwen Su, Jinjin Xu, Yanhao Zhang, Xiaoming Ren, Zhiwang Zhang,
- Abstract summary: LoopAnimate is a novel method for generating videos with consistent start and end frames.
It achieves state-of-the-art performance in both objective metrics, such as fidelity and temporal consistency, and subjective evaluation results.
- Score: 19.761865029125524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research on diffusion model-based video generation has advanced rapidly. However, limitations in object fidelity and generation length hinder its practical applications. Additionally, specific domains like animated wallpapers require seamless looping, where the first and last frames of the video match seamlessly. To address these challenges, this paper proposes LoopAnimate, a novel method for generating videos with consistent start and end frames. To enhance object fidelity, we introduce a framework that decouples multi-level image appearance and textual semantic information. Building upon an image-to-image diffusion model, our approach incorporates both pixel-level and feature-level information from the input image, injecting image appearance and textual semantic embeddings at different positions of the diffusion model. Existing UNet-based video generation models require to input the entire videos during training to encode temporal and positional information at once. However, due to limitations in GPU memory, the number of frames is typically restricted to 16. To address this, this paper proposes a three-stage training strategy with progressively increasing frame numbers and reducing fine-tuning modules. Additionally, we introduce the Temporal E nhanced Motion Module(TEMM) to extend the capacity for encoding temporal and positional information up to 36 frames. The proposed LoopAnimate, which for the first time extends the single-pass generation length of UNet-based video generation models to 35 frames while maintaining high-quality video generation. Experiments demonstrate that LoopAnimate achieves state-of-the-art performance in both objective metrics, such as fidelity and temporal consistency, and subjective evaluation results.
Related papers
- UniAnimate: Taming Unified Video Diffusion Models for Consistent Human Image Animation [53.16986875759286]
We present a UniAnimate framework to enable efficient and long-term human video generation.
We map the reference image along with the posture guidance and noise video into a common feature space.
We also propose a unified noise input that supports random noised input as well as first frame conditioned input.
arXiv Detail & Related papers (2024-06-03T10:51:10Z) - EasyAnimate: A High-Performance Long Video Generation Method based on Transformer Architecture [11.587428534308945]
EasyAnimate is an advanced method for video generation that leverages the power of transformer architecture for high-performance outcomes.
We have expanded the DiT framework originally designed for 2D image synthesis to accommodate the complexities of 3D video generation by incorporating a motion module block.
We provide a holistic ecosystem for video production based on DiT, encompassing aspects such as data pre-processing, VAE training, DiT models training, and end-to-end video inference.
arXiv Detail & Related papers (2024-05-29T11:11:07Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
This paper studies the human image animation task, which aims to generate a video of a certain reference identity following a particular motion sequence.
Existing animation works typically employ the frame-warping technique to animate the reference image towards the target motion.
We introduce MagicAnimate, a diffusion-based framework that aims at enhancing temporal consistency, preserving reference image faithfully, and improving animation fidelity.
arXiv Detail & Related papers (2023-11-27T18:32:31Z) - MoVideo: Motion-Aware Video Generation with Diffusion Models [97.03352319694795]
We propose a novel motion-aware generation (MoVideo) framework that takes motion into consideration from two aspects: video depth and optical flow.
MoVideo achieves state-of-the-art results in both text-to-video and image-to-video generation, showing promising prompt consistency, frame consistency and visual quality.
arXiv Detail & Related papers (2023-11-19T13:36:03Z) - Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation [93.18163456287164]
This paper proposes a novel text-guided video-to-video translation framework to adapt image models to videos.
Our framework achieves global style and local texture temporal consistency at a low cost.
arXiv Detail & Related papers (2023-06-13T17:52:23Z) - Towards Smooth Video Composition [59.134911550142455]
Video generation requires consistent and persistent frames with dynamic content over time.
This work investigates modeling the temporal relations for composing video with arbitrary length, from a few frames to even infinite, using generative adversarial networks (GANs)
We show that the alias-free operation for single image generation, together with adequately pre-learned knowledge, brings a smooth frame transition without compromising the per-frame quality.
arXiv Detail & Related papers (2022-12-14T18:54:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.