Fault Detection in Mobile Networks Using Diffusion Models
- URL: http://arxiv.org/abs/2404.09240v1
- Date: Sun, 14 Apr 2024 12:59:35 GMT
- Title: Fault Detection in Mobile Networks Using Diffusion Models
- Authors: Mohamad Nabeel, Doumitrou Daniil Nimara, Tahar Zanouda,
- Abstract summary: We present a system to detect anomalies in telecom networks using a generative AI model.
We evaluate several strategies using diffusion models to train the model for anomaly detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's hyper-connected world, ensuring the reliability of telecom networks becomes increasingly crucial. Telecom networks encompass numerous underlying and intertwined software and hardware components, each providing different functionalities. To ensure the stability of telecom networks, telecom software, and hardware vendors developed several methods to detect any aberrant behavior in telecom networks and enable instant feedback and alerts. These approaches, although powerful, struggle to generalize due to the unsteady nature of the software-intensive embedded system and the complexity and diversity of multi-standard mobile networks. In this paper, we present a system to detect anomalies in telecom networks using a generative AI model. We evaluate several strategies using diffusion models to train the model for anomaly detection using multivariate time-series data. The contributions of this paper are threefold: (i) A proposal of a framework for utilizing diffusion models for time-series anomaly detection in telecom networks, (ii) A proposal of a particular Diffusion model architecture that outperforms other state-of-the-art techniques, (iii) Experiments on a real-world dataset to demonstrate that our model effectively provides explainable results, exposing some of its limitations and suggesting future research avenues to enhance its capabilities further.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Fault Detection in Telecom Networks using Bi-level Federated Graph
Neural Networks [0.0]
The complexity and diversity of Telecom networks place an increasing strain on maintenance and operation efforts.
Strict security and privacy requirements present a challenge for mobile operators to leverage network data.
We propose a Bi-level Federated Graph Neural Network anomaly detection and diagnosis model.
arXiv Detail & Related papers (2023-11-24T13:23:54Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT [11.480824844205864]
This work proposed a novel framework, namely GTA, for multivariate time series anomaly detection by automatically learning a graph structure followed by the graph convolution.
We also devised a novel graph convolution named Influence propagation convolution to model the anomaly information flow between graph nodes.
The experiments on four public anomaly detection benchmarks further demonstrate our approach's superiority over other state-of-the-arts.
arXiv Detail & Related papers (2021-04-08T01:45:28Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Semi-supervised Variational Temporal Convolutional Network for IoT
Communication Multi-anomaly Detection [3.3659034873495632]
Internet of Things (IoT) devices are constructed to build a huge communications network.
These devices are insecure in reality, it means that the communications network are exposed by the attacker.
In this paper, we propose SS-VTCN, a semi-supervised network for IoT multiple anomaly detection.
arXiv Detail & Related papers (2021-04-05T08:51:24Z) - On the Usage of Generative Models for Network Anomaly Detection in
Multivariate Time-Series [3.1790432590377242]
We introduce Net-GAN, a novel approach to network anomaly detection in time-series.
We exploit the concepts behind generative models to conceive Net-VAE, a complementary approach to Net-GAN.
We evaluate Net-GAN and Net-VAE in different monitoring scenarios, including anomaly detection in IoT sensor data, and intrusion detection in network measurements.
arXiv Detail & Related papers (2020-10-16T10:22:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.