SNN4Agents: A Framework for Developing Energy-Efficient Embodied Spiking Neural Networks for Autonomous Agents
- URL: http://arxiv.org/abs/2404.09331v2
- Date: Tue, 18 Jun 2024 08:36:11 GMT
- Title: SNN4Agents: A Framework for Developing Energy-Efficient Embodied Spiking Neural Networks for Autonomous Agents
- Authors: Rachmad Vidya Wicaksana Putra, Alberto Marchisio, Muhammad Shafique,
- Abstract summary: Spiking Neural Networks (SNNs) use spikes from event-based cameras or data conversion pre-processing to perform sparse computations efficiently.
We propose a novel framework called SNN4Agents that consists of a set of optimization techniques for designing energy-efficient embodied SNNs.
Our framework can maintain high accuracy (i.e., 84.12% accuracy) with 68.75% memory saving, 3.58x speed-up, and 4.03x energy efficiency improvement.
- Score: 6.110543738208028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent trends have shown that autonomous agents, such as Autonomous Ground Vehicles (AGVs), Unmanned Aerial Vehicles (UAVs), and mobile robots, effectively improve human productivity in solving diverse tasks. However, since these agents are typically powered by portable batteries, they require extremely low power/energy consumption to operate in a long lifespan. To solve this challenge, neuromorphic computing has emerged as a promising solution, where bio-inspired Spiking Neural Networks (SNNs) use spikes from event-based cameras or data conversion pre-processing to perform sparse computations efficiently. However, the studies of SNN deployments for autonomous agents are still at an early stage. Hence, the optimization stages for enabling efficient embodied SNN deployments for autonomous agents have not been defined systematically. Toward this, we propose a novel framework called SNN4Agents that consists of a set of optimization techniques for designing energy-efficient embodied SNNs targeting autonomous agent applications. Our SNN4Agents employs weight quantization, timestep reduction, and attention window reduction to jointly improve the energy efficiency, reduce the memory footprint, optimize the processing latency, while maintaining high accuracy. In the evaluation, we investigate use cases of event-based car recognition, and explore the trade-offs among accuracy, latency, memory, and energy consumption. The experimental results show that our proposed framework can maintain high accuracy (i.e., 84.12% accuracy) with 68.75% memory saving, 3.58x speed-up, and 4.03x energy efficiency improvement as compared to the state-of-the-art work for NCARS dataset. In this manner, our SNN4Agents framework paves the way toward enabling energy-efficient embodied SNN deployments for autonomous agents.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Autonomous Agents [6.006032394972252]
Spiking Neural Networks offer high accuracy and ultra low-power/energy computation.
SpikeNAS is a novel fast memory-aware neural architecture search framework for SNNs.
Results show that our SpikeNAS improves the searching time and maintains high accuracy as compared to state-of-the-art.
arXiv Detail & Related papers (2024-02-17T16:33:54Z) - etuner: A Redundancy-Aware Framework for Efficient Continual Learning Application on Edge Devices [47.365775210055396]
We propose ETuner, an efficient edge continual learning framework that optimize inference accuracy, fine-tuning execution time, and energy efficiency.
Experimental results show that, on average, ETuner reduces overall fine-tuning execution time by 64%, energy consumption by 56%, and improves average inference accuracy by 1.75% over the immediate model fine-tuning approach.
arXiv Detail & Related papers (2024-01-30T02:41:05Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
Spiking Neural Networks (SNNs) mimic the information-processing mechanisms of the human brain and are highly energy-efficient.
We propose a new approach named LitE-SNN that incorporates both spatial and temporal compression into the automated network design process.
arXiv Detail & Related papers (2024-01-26T05:23:11Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
We introduce the Epitome, a lightweight neural operator offering convolution-like functionality.
On the software side, we evaluate epitomes' latency and energy on PIM accelerators.
We introduce a PIM-aware layer-wise design method to enhance their hardware efficiency.
arXiv Detail & Related papers (2023-11-12T17:56:39Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - TopSpark: A Timestep Optimization Methodology for Energy-Efficient
Spiking Neural Networks on Autonomous Mobile Agents [14.916996986290902]
Spiking Neural Networks (SNNs) offer low power/energy processing due to sparse computations and efficient online learning.
TopSpark is a novel methodology that leverages adaptive timestep reduction to enable energy-efficient SNN processing in both training and inference.
arXiv Detail & Related papers (2023-03-03T10:20:45Z) - The Hardware Impact of Quantization and Pruning for Weights in Spiking
Neural Networks [0.368986335765876]
quantization and pruning of parameters can both compress the model size, reduce memory footprints, and facilitate low-latency execution.
We study various combinations of pruning and quantization in isolation, cumulatively, and simultaneously to a state-of-the-art SNN targeting gesture recognition.
We show that this state-of-the-art model is amenable to aggressive parameter quantization, not suffering from any loss in accuracy down to ternary weights.
arXiv Detail & Related papers (2023-02-08T16:25:20Z) - Mantis: Enabling Energy-Efficient Autonomous Mobile Agents with Spiking
Neural Networks [14.916996986290902]
Spiking Neural Networks (SNNs) offer low power/energy consumption due to sparse computations and efficient online learning.
We propose a Mantis methodology to systematically employ SNNs on autonomous mobile agents.
arXiv Detail & Related papers (2022-12-24T00:00:53Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - FSpiNN: An Optimization Framework for Memory- and Energy-Efficient
Spiking Neural Networks [14.916996986290902]
Spiking Neural Networks (SNNs) offer unsupervised learning capability due to the spike-timing-dependent plasticity (STDP) rule.
However, state-of-the-art SNNs require a large memory footprint to achieve high accuracy.
We propose FSpiNN, an optimization framework for obtaining memory- and energy-efficient SNNs for training and inference processing.
arXiv Detail & Related papers (2020-07-17T09:40:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.