On the Optimal Regret of Locally Private Linear Contextual Bandit
- URL: http://arxiv.org/abs/2404.09413v1
- Date: Mon, 15 Apr 2024 02:00:24 GMT
- Title: On the Optimal Regret of Locally Private Linear Contextual Bandit
- Authors: Jiachun Li, David Simchi-Levi, Yining Wang,
- Abstract summary: We show that it is possible to achieve an $tilde O(sqrtT)$ regret upper bound for locally private linear contextual bandit.
Our solution relies on several new algorithmic and analytical ideas.
- Score: 18.300225068036642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contextual bandit with linear reward functions is among one of the most extensively studied models in bandit and online learning research. Recently, there has been increasing interest in designing \emph{locally private} linear contextual bandit algorithms, where sensitive information contained in contexts and rewards is protected against leakage to the general public. While the classical linear contextual bandit algorithm admits cumulative regret upper bounds of $\tilde O(\sqrt{T})$ via multiple alternative methods, it has remained open whether such regret bounds are attainable in the presence of local privacy constraints, with the state-of-the-art result being $\tilde O(T^{3/4})$. In this paper, we show that it is indeed possible to achieve an $\tilde O(\sqrt{T})$ regret upper bound for locally private linear contextual bandit. Our solution relies on several new algorithmic and analytical ideas, such as the analysis of mean absolute deviation errors and layered principal component regression in order to achieve small mean absolute deviation errors.
Related papers
- Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED) is a highly effective approach to the multi-armed bandit problem.
It has been observed to empirically outperform UCB-based algorithms and Thompson Sampling.
We present novel linear versions of the IMED algorithm, which we call the family of LinIMED algorithms.
arXiv Detail & Related papers (2024-05-24T04:11:58Z) - FLIPHAT: Joint Differential Privacy for High Dimensional Sparse Linear Bandits [8.908421753758475]
High dimensional sparse linear bandits serve as an efficient model for sequential decision-making problems.
Motivated by data privacy concerns, we study the joint differentially private high dimensional sparse linear bandits.
We show that FLIPHAT achieves optimal regret in terms of privacy parameters.
arXiv Detail & Related papers (2024-05-22T22:19:12Z) - Estimating Optimal Policy Value in General Linear Contextual Bandits [50.008542459050155]
In many bandit problems, the maximal reward achievable by a policy is often unknown in advance.
We consider the problem of estimating the optimal policy value in the sublinear data regime before the optimal policy is even learnable.
We present a more practical, computationally efficient algorithm that estimates a problem-dependent upper bound on $V*$.
arXiv Detail & Related papers (2023-02-19T01:09:24Z) - Corruption-Robust Algorithms with Uncertainty Weighting for Nonlinear
Contextual Bandits and Markov Decision Processes [59.61248760134937]
We propose an efficient algorithm to achieve a regret of $tildeO(sqrtT+zeta)$.
The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit.
We generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $zeta$.
arXiv Detail & Related papers (2022-12-12T15:04:56Z) - Contexts can be Cheap: Solving Stochastic Contextual Bandits with Linear
Bandit Algorithms [39.70492757288025]
We address the contextual linear bandit problem, where a decision maker is provided a context.
We show that the contextual problem can be solved as a linear bandit problem.
Our results imply a $O(dsqrtTlog T)$ high-probability regret bound for contextual linear bandits.
arXiv Detail & Related papers (2022-11-08T22:18:53Z) - On Kernelized Multi-Armed Bandits with Constraints [16.102401271318012]
We study a bandit problem with a general unknown reward function and a general unknown constraint function.
We propose a general framework for both algorithm performance analysis.
We demonstrate the superior performance of our proposed algorithms via numerical experiments.
arXiv Detail & Related papers (2022-03-29T14:02:03Z) - High-Dimensional Sparse Linear Bandits [67.9378546011416]
We derive a novel $Omega(n2/3)$ dimension-free minimax regret lower bound for sparse linear bandits in the data-poor regime.
We also prove a dimension-free $O(sqrtn)$ regret upper bound under an additional assumption on the magnitude of the signal for relevant features.
arXiv Detail & Related papers (2020-11-08T16:48:11Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies.
We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB)
arXiv Detail & Related papers (2020-06-17T22:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.