Improving Weakly-Supervised Object Localization Using Adversarial Erasing and Pseudo Label
- URL: http://arxiv.org/abs/2404.09475v1
- Date: Mon, 15 Apr 2024 06:02:09 GMT
- Title: Improving Weakly-Supervised Object Localization Using Adversarial Erasing and Pseudo Label
- Authors: Byeongkeun Kang, Sinhae Cha, Yeejin Lee,
- Abstract summary: This paper investigates a framework for weakly-supervised object localization.
It aims to train a neural network capable of predicting both the object class and its location using only images and their image-level class labels.
- Score: 7.400926717561454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly-supervised learning approaches have gained significant attention due to their ability to reduce the effort required for human annotations in training neural networks. This paper investigates a framework for weakly-supervised object localization, which aims to train a neural network capable of predicting both the object class and its location using only images and their image-level class labels. The proposed framework consists of a shared feature extractor, a classifier, and a localizer. The localizer predicts pixel-level class probabilities, while the classifier predicts the object class at the image level. Since image-level class labels are insufficient for training the localizer, weakly-supervised object localization methods often encounter challenges in accurately localizing the entire object region. To address this issue, the proposed method incorporates adversarial erasing and pseudo labels to improve localization accuracy. Specifically, novel losses are designed to utilize adversarially erased foreground features and adversarially erased feature maps, reducing dependence on the most discriminative region. Additionally, the proposed method employs pseudo labels to suppress activation values in the background while increasing them in the foreground. The proposed method is applied to two backbone networks (MobileNetV1 and InceptionV3) and is evaluated on three publicly available datasets (ILSVRC-2012, CUB-200-2011, and PASCAL VOC 2012). The experimental results demonstrate that the proposed method outperforms previous state-of-the-art methods across all evaluated metrics.
Related papers
- Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - FDCNet: Feature Drift Compensation Network for Class-Incremental Weakly
Supervised Object Localization [10.08410402383604]
This work addresses the task of class-incremental weakly supervised object localization (CI-WSOL)
The goal is to incrementally learn object localization for novel classes using only image-level annotations while retaining the ability to localize previously learned classes.
We first present a strong baseline method for CI-WSOL by adapting the strategies of class-incremental classifiers to catastrophic forgetting.
We then propose the feature drift compensation network to compensate for the effects of feature drifts on class scores and localization maps.
arXiv Detail & Related papers (2023-09-17T01:10:45Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot object detection (FSOD) methods have emerged as a solution to the limitations of classic object detection approaches.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during the FSOD training stage.
Our improved hierarchical sampling strategy for the region proposal network (RPN) also boosts the perception of the object detection model for large objects.
arXiv Detail & Related papers (2023-08-15T02:35:59Z) - Rethinking the Localization in Weakly Supervised Object Localization [51.29084037301646]
Weakly supervised object localization (WSOL) is one of the most popular and challenging tasks in computer vision.
Recent dividing WSOL into two parts (class-agnostic object localization and object classification) has become the state-of-the-art pipeline for this task.
We propose to replace SCR with a binary-class detector (BCD) for localizing multiple objects, where the detector is trained by discriminating the foreground and background.
arXiv Detail & Related papers (2023-08-11T14:38:51Z) - Identification of Novel Classes for Improving Few-Shot Object Detection [12.013345715187285]
Few-shot object detection (FSOD) methods offer a remedy by realizing robust object detection using only a few training samples per class.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during training to improve FSOD performance.
Our experimental results indicate that our method is effective and outperforms the existing state-of-the-art (SOTA) FSOD methods.
arXiv Detail & Related papers (2023-03-18T14:12:52Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Anti-Adversarially Manipulated Attributions for Weakly Supervised
Semantic Segmentation and Object Localization [31.69344455448125]
We present an attribution map of an image that is manipulated to increase the classification score produced by a classifier before the final softmax or sigmoid layer.
This manipulation is realized in an anti-adversarial manner, so that the original image is perturbed along pixel gradients in directions opposite to those used in an adversarial attack.
In addition, we introduce a new regularization procedure that inhibits the incorrect attribution of regions unrelated to the target object and the excessive concentration of attributions on a small region of the target object.
arXiv Detail & Related papers (2022-04-11T06:18:02Z) - Learning Consistency from High-quality Pseudo-labels for Weakly
Supervised Object Localization [7.602783618330373]
We propose a two-stage approach to learn more consistent localization.
In the first stage, we propose a mask-based pseudo label generator algorithm, and use the pseudo-supervised learning method to initialize an object localization network.
In the second stage, we propose a simple and effective method for evaluating the confidence of pseudo-labels based on classification discrimination.
arXiv Detail & Related papers (2022-03-18T09:05:51Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
We introduce a new strategy that subsumes previous Image-level and Object-level approaches into a generalized, Region-level approach.
We show that this approach significantly decreases labeling effort and improves rare object search on realistic data with inherent class-imbalance and cluttered scenes.
arXiv Detail & Related papers (2021-08-20T14:02:38Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
We propose a novel self-training approach that enables a typical object detector trained only with point-level annotations.
During training, we utilize the available point annotations to supervise the estimation of the center points of objects.
Experimental results show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks.
arXiv Detail & Related papers (2020-07-25T02:14:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.