Dynamical Mean Field Theory for Real Materials on a Quantum Computer
- URL: http://arxiv.org/abs/2404.09527v1
- Date: Mon, 15 Apr 2024 07:45:50 GMT
- Title: Dynamical Mean Field Theory for Real Materials on a Quantum Computer
- Authors: Johannes Selisko, Maximilian Amsler, Christopher Wever, Yukio Kawashima, Georgy Samsonidze, Rukhsan Ul Haq, Francesco Tacchino, Ivano Tavernelli, Thomas Eckl,
- Abstract summary: We report on the development of a hybrid quantum-classical DFT+DMFT simulation framework.
Hardware experiments with up to 14 qubits on the IBM Quantum system are conducted.
We showcase the utility of our quantum DFT+DMFT workflow by assessing the correlation effects on the electronic structure of a real material.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers (QC) could harbor the potential to significantly advance materials simulations, particularly at the atomistic scale involving strongly correlated fermionic systems where an accurate description of quantum many-body effects scales unfavorably with size. While a full-scale treatment of condensed matter systems with currently available noisy quantum computers remains elusive, quantum embedding schemes like dynamical mean-field theory (DMFT) allow the mapping of an effective, reduced subspace Hamiltonian to available devices to improve the accuracy of ab initio calculations such as density functional theory (DFT). Here, we report on the development of a hybrid quantum-classical DFT+DMFT simulation framework which relies on a quantum impurity solver based on the Lehmann representation of the impurity Green's function. Hardware experiments with up to 14 qubits on the IBM Quantum system are conducted, using advanced error mitigation methods and a novel calibration scheme for an improved zero-noise extrapolation to effectively reduce adverse effects from inherent noise on current quantum devices. We showcase the utility of our quantum DFT+DMFT workflow by assessing the correlation effects on the electronic structure of a real material, Ca2CuO2Cl2, and by carefully benchmarking our quantum results with respect to exact reference solutions and experimental spectroscopy measurements.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Non-Markovian noise sources for quantum error mitigation [0.0]
We present a non-Markovian model of quantum state evolution and a quantum error mitigation cost function tailored for NISQ devices.
Our findings reveal that the cost function for quantum error mitigation increases as the coupling strength between the quantum system and its environment intensifies.
arXiv Detail & Related papers (2023-02-10T05:10:27Z) - Quantum Embedding Method for the Simulation of Strongly Correlated
Systems on Quantum Computers [0.0]
We introduce the projection-based embedding method for combining the variational quantum eigensolver (VQE) algorithm with density functional theory (DFT)
The developed VQE-in-DFT method is then implemented efficiently on a real quantum device and employed for simulating the triple bond breaking process in butyronitrile.
The developments will benefit many different chemical areas including the computer aided drug design as well as the study of metalloenzymes with a strongly correlated fragment.
arXiv Detail & Related papers (2023-02-06T19:00:03Z) - Dynamical mean-field theory for the Hubbard-Holstein model on a quantum
device [0.0]
We report a demonstration of solving the dynamical mean-field theory (DMFT) impurity problem for the Hubbard-Holstein model on the IBM 27-qubit Quantum Falcon Processor Kawasaki.
This opens up the possibility to investigate strongly correlated electron systems coupled to bosonic degrees of freedom and impurity problems with frequency-dependent interactions.
arXiv Detail & Related papers (2023-01-05T00:36:21Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Towards simulating 2D effects in lattice gauge theories on a quantum
computer [1.327151508840301]
We propose an experimental quantum simulation scheme to study ground state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology.
The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160.
We present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED.
arXiv Detail & Related papers (2020-08-21T01:20:55Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.