DIDLM:A Comprehensive Multi-Sensor Dataset with Infrared Cameras, Depth Cameras, LiDAR, and 4D Millimeter-Wave Radar in Challenging Scenarios for 3D Mapping
- URL: http://arxiv.org/abs/2404.09622v1
- Date: Mon, 15 Apr 2024 09:49:33 GMT
- Title: DIDLM:A Comprehensive Multi-Sensor Dataset with Infrared Cameras, Depth Cameras, LiDAR, and 4D Millimeter-Wave Radar in Challenging Scenarios for 3D Mapping
- Authors: WeiSheng Gong, Chen He, KaiJie Su, QingYong Li,
- Abstract summary: This study presents a comprehensive multi-sensor dataset designed for 3D mapping in challenging indoor and outdoor environments.
The dataset comprises data from infrared cameras, depth cameras, LiDAR, and 4D millimeter-wave radar.
Various SLAM algorithms are employed to process the dataset, revealing performance differences among algorithms in different scenarios.
- Score: 7.050468075029598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a comprehensive multi-sensor dataset designed for 3D mapping in challenging indoor and outdoor environments. The dataset comprises data from infrared cameras, depth cameras, LiDAR, and 4D millimeter-wave radar, facilitating exploration of advanced perception and mapping techniques. Integration of diverse sensor data enhances perceptual capabilities in extreme conditions such as rain, snow, and uneven road surfaces. The dataset also includes interactive robot data at different speeds indoors and outdoors, providing a realistic background environment. Slam comparisons between similar routes are conducted, analyzing the influence of different complex scenes on various sensors. Various SLAM algorithms are employed to process the dataset, revealing performance differences among algorithms in different scenarios. In summary, this dataset addresses the problem of data scarcity in special environments, fostering the development of perception and mapping algorithms for extreme conditions. Leveraging multi-sensor data including infrared, depth cameras, LiDAR, 4D millimeter-wave radar, and robot interactions, the dataset advances intelligent mapping and perception capabilities.Our dataset is available at https://github.com/GongWeiSheng/DIDLM.
Related papers
- MAROON: A Framework for the Joint Characterization of Near-Field High-Resolution Radar and Optical Depth Imaging Techniques [4.816237933371206]
We take on the unique challenge of characterizing depth imagers from both, the optical and radio-frequency domain.
We provide a comprehensive evaluation of their depth measurements with respect to distinct object materials, geometries, and object-to-sensor distances.
All object measurements will be made public in form of a multimodal dataset, called MAROON.
arXiv Detail & Related papers (2024-11-01T11:53:10Z) - Exploring Domain Shift on Radar-Based 3D Object Detection Amidst Diverse Environmental Conditions [15.767261586617746]
This study delves into the often-overlooked yet crucial issue of domain shift in 4D radar-based object detection.
Our findings highlight distinct domain shifts across various weather scenarios, revealing unique dataset sensitivities.
transitioning between different road types, especially from highways to urban settings, introduces notable domain shifts.
arXiv Detail & Related papers (2024-08-13T09:55:38Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks [61.74608497496841]
Training on inaccurate or corrupt data induces model bias and hampers generalisation capabilities.
This paper investigates the effect of sensor errors for the dense 3D vision tasks of depth estimation and reconstruction.
arXiv Detail & Related papers (2023-03-26T22:32:44Z) - DensePose From WiFi [86.61881052177228]
We develop a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions.
Our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches.
arXiv Detail & Related papers (2022-12-31T16:48:43Z) - CramNet: Camera-Radar Fusion with Ray-Constrained Cross-Attention for
Robust 3D Object Detection [12.557361522985898]
We propose a camera-radar matching network CramNet to fuse the sensor readings from camera and radar in a joint 3D space.
Our method supports training with sensor modality dropout, which leads to robust 3D object detection, even when a camera or radar sensor suddenly malfunctions on a vehicle.
arXiv Detail & Related papers (2022-10-17T17:18:47Z) - mmBody Benchmark: 3D Body Reconstruction Dataset and Analysis for
Millimeter Wave Radar [10.610455816814985]
Millimeter Wave (mmWave) Radar is gaining popularity as it can work in adverse environments like smoke, rain, snow, poor lighting, etc.
Prior work has explored the possibility of reconstructing 3D skeletons or meshes from the noisy and sparse mmWave Radar signals.
This dataset consists of synchronized and calibrated mmWave radar point clouds and RGB(D) images in different scenes and skeleton/mesh annotations for humans in the scenes.
arXiv Detail & Related papers (2022-09-12T08:00:31Z) - Learning Online Multi-Sensor Depth Fusion [100.84519175539378]
SenFuNet is a depth fusion approach that learns sensor-specific noise and outlier statistics.
We conduct experiments with various sensor combinations on the real-world CoRBS and Scene3D datasets.
arXiv Detail & Related papers (2022-04-07T10:45:32Z) - Multi-sensor large-scale dataset for multi-view 3D reconstruction [63.59401680137808]
We present a new multi-sensor dataset for multi-view 3D surface reconstruction.
It includes registered RGB and depth data from sensors of different resolutions and modalities: smartphones, Intel RealSense, Microsoft Kinect, industrial cameras, and structured-light scanner.
We provide around 1.4 million images of 107 different scenes acquired from 100 viewing directions under 14 lighting conditions.
arXiv Detail & Related papers (2022-03-11T17:32:27Z) - The Hilti SLAM Challenge Dataset [41.091844019181735]
Construction environments pose challenging problem to Simultaneous Localization and Mapping (SLAM) algorithms.
To help this research, we propose a new dataset, the Hilti SLAM Challenge dataset.
Each dataset includes accurate ground truth to allow direct testing of SLAM results.
arXiv Detail & Related papers (2021-09-23T12:02:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.